Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 481: 129-41, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24594742

ABSTRACT

The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland vegetation requires larger areas, as long as eutrophication has not been seriously tackled.


Subject(s)
Agriculture/methods , Biodiversity , Ecosystem , Fertilizers , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Wetlands , Netherlands , Water Pollution, Chemical/statistics & numerical data
2.
Sci Total Environ ; 402(1): 70-81, 2008 Aug 25.
Article in English | MEDLINE | ID: mdl-18514261

ABSTRACT

Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.


Subject(s)
Ecosystem , Floods , Plant Development , Soil Microbiology , Soil Pollutants/analysis , Geography , Hydrogen-Ion Concentration , Plants/classification , Population Dynamics , Seasons , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Species Specificity , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...