Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 159: 114210, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36621142

ABSTRACT

Drug resistance is a perpetual problem in cancer therapy with many underlying mechanisms. Alterations in drug transport over the cancer cell membrane can severely alter intratumoral drug exposure, contributing to resistance. Here, we present the somatic mutational landscape of 48 ATP-binding cassette and 416 solute carrier transporter genes in a cohort (CPCT-02; NCT01855477) of 3290 patients with different types of advanced and metastasized cancer through analysis of whole genome and transcriptome sequencing. In order to identify potential stressor mechanisms, we stratified patients based on previous systemic therapies and subsequently investigated the enrichment of mutations and copy-number alterations of transporter genes. In tumors from patients pretreated with protein kinase inhibitors (PKIs), genes encoding for specific copper (SLC31A1 and SLC31A2, χ2-test adjusted p-values: 6.9e-09 and 2.5e-09) and nucleoside transporters (SLC28A2 and SLC28A3, χ2-test adjusted p-values: 3.5e-06 and 6.8e-07) were deleted significantly more frequently than in patients pretreated with chemotherapy. Moreover, we detected 16 transporters that were differentially expressed at RNA level between these treatment groups. These findings contradict mechanisms of selective pressure, as they would be expected to originate during treatment with chemotherapy rather than with PKIs. Hence, they might constitute primary drug resistance mechanisms and, therefore, warrant further study.


Subject(s)
Neoplasms , Transcriptome , Humans , Transcriptome/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , RNA/metabolism , Biological Transport
2.
Commun Biol ; 5(1): 338, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396392

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Small Untranslated , Archaea/genetics , Bacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Human , Humans , Male
3.
Neurooncol Adv ; 4(1): vdab177, 2022.
Article in English | MEDLINE | ID: mdl-35047820

ABSTRACT

BACKGROUND: The survival of glioblastoma patients is poor. Median survival after diagnosis is 15 months, despite treatment involving surgical resection, radiotherapy, and/or temozolomide chemotherapy. Identification of novel targets and stratification strategies of glioblastoma patients to improve patient survival is urgently needed. Whole-genome sequencing (WGS) is the most comprehensive means to identify such DNA-level targets. We report a unique set of WGS samples along with comprehensive analyses of the glioblastoma genome and potential clinical impact of WGS. METHODS: Our cohort consisted of 42 glioblastoma tumor tissue and matched whole-blood samples, which were whole-genome sequenced as part of the CPCT-02 study. Somatic single-nucleotide variants, small insertions/deletions, multi-nucleotide variants, copy-number alterations (CNAs), and structural variants were analyzed. These aberrations were harnessed to investigate driver genes, enrichments in CNAs, mutational signatures, fusion genes, and potential targeted therapies. RESULTS: Tumor mutational burden (TMB) was similar to other WGS efforts (1-342 mutations per megabase pair). Mutational analysis in low TMB samples showed that the age-related CpG demethylation signature was dominant, while hyper- and ultramutated tumors had additional defective DNA mismatch repair signatures and showed microsatellite instability in their genomes. We detected chromothripsis in 24% of our cohort, recurrently on chromosomes 1 and 12. Recurrent noncoding regions only resulted in TERT promoter variants. Finally, we found biomarkers and potentially druggable changes in all but one of our tumor samples. CONCLUSIONS: With high-quality WGS data and comprehensive methods, we identified the landscape of driver gene events and druggable targets in glioblastoma patients.

4.
Bioinformatics ; 38(5): 1437-1439, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34864882

ABSTRACT

SUMMARY: We present an R-based open-source software termed ProteoDisco that allows for flexible incorporation of genomic variants, fusion genes and (aberrant) transcriptomic variants from standardized formats into protein variant sequences. ProteoDisco allows for a flexible step-by-step workflow allowing for in-depth customization to suit a myriad of research approaches in the field of proteogenomics, on all organisms for which a reference genome and transcript annotations are available. AVAILABILITY AND IMPLEMENTATION: ProteoDisco (R package version ≥ 1.0.0) is available on Bioconductor at https://doi.org/doi:10.18129/B9.bioc.ProteoDisco and from https://github.com/ErasmusMC-CCBC/ProteoDisco/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteogenomics , Databases, Protein , Software , Genome , Amino Acid Sequence
5.
EBioMedicine ; 73: 103681, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34749299

ABSTRACT

BACKGROUND: The androgen receptor (AR) pathway is a key driver of neoplastic behaviour in the different stages of metastatic prostate cancer (mPCa). Targeting the AR therefore remains the cornerstone for mPCa treatment. We have previously reported that activation of AR signalling affects taxane chemo-sensitivity in preclinical models of castration resistant PCa (CRPC). Here, we explored the anti-tumour efficacy of the AR targeted inhibitor enzalutamide combined with cabazitaxel. METHODS: We used the AR positive CRPC model PC346C-DCC-K to assess the in vitro and in vivo activity of combining enzalutamide with cabazitaxel. Subsequent validation studies were performed using an enzalutamide resistant VCaP model. To investigate the impact of AR signalling on cabazitaxel activity we used quantitative live-cell imaging of tubulin stabilization and apoptosis related nuclear fragmentation. FINDINGS: Enzalutamide strongly amplified cabazitaxel anti-tumour activity in the patient-derived xenograft models PC346C-DCC-K (median time to humane endpoint 77 versus 48 days, P<0.0001) and VCaP-Enza-B (median time to humane endpoint 80 versus 53 days, P<0.001). Although enzalutamide treatment by itself was ineffective in reducing tumour growth, it significantly suppressed AR signalling in PC346C-DCC-K tumours as shown by AR target gene expression. The addition of enzalutamide enhanced cabazitaxel induced apoptosis as shown by live-cell imaging (P<0.001). INTERPRETATION: Our study demonstrates that cabazitaxel efficacy can be improved by simultaneous blocking of AR signalling by enzalutamide, even if AR targeted treatment no longer affects tumour growth. These findings support clinical studies that combine AR targeted inhibitors with cabazitaxel in CRPC.


Subject(s)
Androgens/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Taxoids/pharmacology , Androgen Receptor Antagonists/pharmacology , Animals , Apoptosis/drug effects , Benzamides/pharmacology , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Fluorescent Antibody Technique , Humans , Male , Mice , Microtubules/metabolism , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/etiology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Taxoids/therapeutic use , Xenograft Model Antitumor Assays
6.
Sci Rep ; 11(1): 7470, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33811251

ABSTRACT

AXIN1 mutations are observed in 8-10% of hepatocellular carcinomas (HCCs) and originally were considered to support tumor growth by aberrantly enhancing ß-catenin signaling. This view has however been challenged by reports showing neither a clear nuclear ß-catenin accumulation nor clearly enhanced expression of ß-catenin target genes. Here, using nine HCC lines, we show that AXIN1 mutation or siRNA mediated knockdown contributes to enhanced ß-catenin signaling in all AXIN1-mutant and non-mutant lines, also confirmed by reduced signaling in AXIN1-repaired SNU449 cells. Both AXIN1 and AXIN2 work synergistically to control ß-catenin signaling. While in the AXIN1-mutant lines, AXIN2 is solely responsible for keeping signaling in check, in the non-mutant lines both AXIN proteins contribute to ß-catenin regulation to varying levels. The AXIN proteins have gained substantial interest in cancer research for a second reason. Their activity in the ß-catenin destruction complex can be increased by tankyrase inhibitors, which thus may serve as a therapeutic option to reduce the growth of ß-catenin-dependent cancers. At concentrations that inhibit tankyrase activity, some lines (e.g. HepG2, SNU398) were clearly affected in colony formation, but in most cases apparently independent from effects on ß-catenin signaling. Overall, our analyses show that AXIN1 inactivation leads to enhanced ß-catenin signaling in HCC cell lines, questioning the strong statements that have been made in this regard. Enhancing AXIN activity by tankyrase monotherapy provides however no effective treatment to affect their growth exclusively through reducing ß-catenin signaling.


Subject(s)
Axin Protein/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Tankyrases/antagonists & inhibitors , Cell Line, Tumor , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Tankyrases/metabolism , Tumor Stem Cell Assay , Wnt Signaling Pathway , beta Catenin/metabolism
7.
Cell Rep ; 24(9): 2312-2328.e7, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157426

ABSTRACT

IBD syndromes such as Crohn's disease and ulcerative colitis result from the inflammation of specific intestinal segments. Although many studies have reported on the regenerative response of intestinal progenitor and stem cells to tissue injury, very little is known about the response of differentiated lineages to inflammatory cues. Here, we show that acute inflammation of the mouse small intestine is followed by a dramatic loss of Lgr5+ stem cells. Instead, Paneth cells re-enter the cell cycle, lose their secretory expression signature, and acquire stem-like properties, thus contributing to the tissue regenerative response to inflammation. Stem cell factor secretion upon inflammation triggers signaling through the c-Kit receptor and a cascade of downstream events culminating in GSK3ß inhibition and Wnt activation in Paneth cells. Hence, the plasticity of the intestinal epithelium in response to inflammation goes well beyond stem and progenitor cells and extends to the fully differentiated and post-mitotic Paneth cells.


Subject(s)
Inflammation/metabolism , Intestine, Small/physiopathology , Nerve Regeneration/physiology , Paneth Cells/metabolism , Animals , Cell Differentiation , Disease Models, Animal , Mice , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...