Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
EuroIntervention ; 20(11): e699-e706, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38840578

ABSTRACT

BACKGROUND: The hyperaemic stenosis resistance (HSR) index was introduced to provide a more comprehensive indicator of the haemodynamic severity of a coronary lesion. HSR combines both the pressure drop across a lesion and the flow through it. As such, HSR overcomes the limitations of the more traditional fractional flow reserve (FFR) or coronary flow reserve (CFR) indices. AIMS: We aimed to identify the diagnostic and prognostic value of HSR and evaluate the clinical implications. METHODS: Patients with chronic coronary syndromes (CCS) and obstructive coronary artery disease were selected from the multicentre ILIAS Registry. For this study, only patients with combined Doppler flow and pressure measurements were included. RESULTS: A total of 853 patients with 1,107 vessels were included. HSR more accurately identified the presence of inducible ischaemia compared to FFR and CFR (area under the curve 0.71 vs 0.66 and 0.62, respectively; p<0.005 for both). An abnormal HSR measurement was an independent and important predictor of target vessel failure at 5-year follow-up (hazard ratio 3.80, 95% confidence interval: 2.12-6.73; p<0.005). In vessels deferred from revascularisation, HSR seems to identify more accurately those vessels that may benefit from revascularisation rather than FFR and/or CFR. CONCLUSIONS: The present study affirms the theoretical advantages of the HSR index for the detection of ischaemia-Âinducing coronary lesions in a large CCS population. (Inclusive Invasive Physiological Assessment in Angina Syndromes Registry [ILIAS Registry], ClinicalTrials.gov: NCT04485234).


Subject(s)
Angina, Stable , Fractional Flow Reserve, Myocardial , Registries , Humans , Male , Female , Aged , Middle Aged , Angina, Stable/physiopathology , Angina, Stable/therapy , Angina, Stable/diagnosis , Fractional Flow Reserve, Myocardial/physiology , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnosis , Prognosis , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/therapy , Treatment Outcome , Vascular Resistance/physiology , Coronary Angiography
4.
Int J Cardiol ; 402: 131832, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38316189

ABSTRACT

BACKGROUND: The microvascular resistance reserve (MRR) is an innovative index to assess the vasodilatory capacity of the coronary circulation while accounting for the presence of concomitant epicardial disease. The MRR has shown to be a valuable diagnostic and prognostic tool in the general coronary artery disease (CAD) population. However, considering the fundamental aspects of its assessment and the unique hemodynamic characteristics of women, it is crucial to provide additional considerations for evaluating the MRR specifically in women. AIM: The aim of this study was to assess the diagnostic and prognostic applicability of the MRR in women and assess the potential differences across different sexes. METHODS: From the ILIAS Registry, we enrolled all patients with a stable indication for invasive coronary angiography, ensuring complete physiological and follow-up data. We analyzed the diagnostic value by comparing differences between sexes and evaluated the prognostic value of the MRR specifically in women, comparing it to that in men. RESULTS: A total of 1494 patients were included of which 26% were women. The correlation between MRR and CFR was good and similar between women (r = 0.80, p < 0.005) and men (r = 0.81, p < 0.005). The MRR was an independent and important predictor of MACE in both women (HR 0.67, 0.47-0.96, p = 0.027) and men (HR 0.84, 0.74-0.95, p = 0.007). The optimal cut-off value for MRR in women was 2.8 and 3.2 in men. An abnormal MRR similarly predicted MACE at 5-year follow-up in both women and men. CONCLUSION: The MRR seems to be equally applicable in both women and men with stable coronary artery disease.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Male , Humans , Female , Coronary Artery Disease/diagnostic imaging , Coronary Circulation/physiology , Coronary Angiography , Prognosis , Hemodynamics , Fractional Flow Reserve, Myocardial/physiology , Coronary Vessels/diagnostic imaging
5.
Heart Vessels ; 39(4): 299-309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367040

ABSTRACT

Fractional flow reserve (FFR) and instantaneous wave-free ratio (iFR) are invasive techniques used to evaluate the hemodynamic significance of coronary artery stenosis. These methods have been validated through perfusion imaging and clinical trials. New invasive pressure ratios that do not require hyperemia have recently emerged, and it is essential to confirm their diagnostic efficacy. The aim of this study was to validate the resting full-cycle ratio (RFR) and the diastolic pressure ratio (dPR), against [15O]H2O positron emission tomography (PET) imaging. A total of 129 symptomatic patients with an intermediate risk of coronary artery disease (CAD) were included. All patients underwent cardiac [15O]H2O PET with quantitative assessment of resting and hyperemic myocardial perfusion. Within a 2 week period, coronary angiography was performed. Intracoronary pressure measurements were obtained in 320 vessels and RFR, dPR, and FFR were computed. PET derived regional hyperemic myocardial blood flow (hMBF) and myocardial perfusion reserve (MPR) served as reference standards. In coronary arteries with stenoses (43%, 136 of 320), the overall diagnostic accuracies of RFR, dPR, and FFR did not differ when PET hyperemic MBF < 2.3 ml min-1 (69.9%, 70.6%, and 77.1%, respectively) and PET MPR < 2.5 (70.6%, 71.3%, and 66.9%, respectively) were considered as the reference for myocardial ischemia. Non-significant differences between the areas under the receiver operating characteristic (ROC) curve were found between the different indices. Furthermore, the integration of FFR with RFR (or dPR) does not enhance the diagnostic information already achieved by FFR in the characterization of ischemia via PET perfusion. In conclusion, the novel non-hyperemic pressure ratios, RFR and dPR, have a diagnostic performance comparable to FFR in assessing regional myocardial ischemia. These findings suggest that RFR and dPR may be considered as an FFR alternative for invasively guiding revascularization treatment in symptomatic patients with CAD.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Blood Pressure , Cardiac Catheterization , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Positron-Emission Tomography , Coronary Angiography , Coronary Vessels/diagnostic imaging , Predictive Value of Tests
6.
Am J Cardiol ; 217: 49-58, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38417650

ABSTRACT

Coronary endothelial dysfunction (CED) and coronary artery spasm (CAS) are causes of angina with no obstructive coronary arteries in patients. Both can be diagnosed by invasive coronary function testing (ICFT) using acetylcholine (ACh). This study aimed to evaluate the diagnostic yield of a 3-minute ACh infusion as compared with a 1-minute ACh bolus injection protocol in testing CED and CAS. We evaluated 220 consecutive patients with angina and no obstructive coronary arteries who underwent ICFT using continuous Doppler flow measurements. Per protocol, 110 patients were tested using 3-minute infusion, and thereafter 110 patients using 1-minute bolus injections, because of a protocol change. CED was defined as a <50% increase in coronary blood flow or any epicardial vasoconstriction in reaction to low-dose ACh and CAS according to the Coronary Vasomotor Disorders International Study Group (COVADIS) criteria, both with and without T-wave abnormalities, in reaction to high dose ACh. The prevalence of CED was equal in both protocols (78% vs 79%, p = 0.869). Regarding the endotypes of CAS according to COVADIS, the equivocal endotype was diagnosed less often in the 3 vs 1-minute protocol (24% vs 44%, p = 0.004). Including T-wave abnormalities in the COVADIS criteria resulted in a similar diagnostic yield of both protocols. Hemodynamic changes from baseline to the low or high ACh doses were comparable between the protocols for each endotype. In conclusion, ICFT using 3-minute infusion or 1-minute bolus injections of ACh showed a similar diagnostic yield of CED. When using the COVADIS criteria, a difference in the equivocal diagnosis was observed. Including T-wave abnormalities as a diagnostic criterion reclassified equivocal test results into CAS and decreased this difference. For clinical practice, we recommend the inclusion of T-wave abnormalities as a diagnostic criterion for CAS and the 1-minute bolus protocol for practicality.


Subject(s)
Acetylcholine , Coronary Vasospasm , Humans , Coronary Angiography , Coronary Vasospasm/diagnosis , Coronary Vasospasm/epidemiology , Vasoconstriction , Angina Pectoris , Coronary Vessels/diagnostic imaging
7.
Am J Physiol Heart Circ Physiol ; 326(4): H1037-H1044, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38391315

ABSTRACT

Recently, a novel method to estimate wedge pressure (Pw)-corrected minimal microvascular resistance (MR) was introduced. However, this method has not been validated since, and there are some theoretical concerns regarding the impact of different physiological conditions on the derivation of Pw measurements. This study sought to validate the recently introduced method to estimate Pw-corrected MR in a Doppler-derived study population and to evaluate the impact of different physiological conditions on the Pw measurements and the derivation of Pw-corrected MR. The method to derive "estimated" hyperemic microvascular resistance (HMR) without the need for Pw measurements was validated by estimating the coronary fractional flow reserve (FFRcor) from myocardial fractional flow reserve (FFRmyo) in a Doppler-derived study population (N = 53). From these patients, 24 had hyperemic Pw measurements available for the evaluation of hyperemic conditions on the derivation of Pw and its effect on the derivation of both "true" (with measured Pw) and "estimated" Pw-corrected HMR. Nonhyperemic Pw differed significantly from Pw measured in hyperemic conditions (26 ± 14 vs. 35 ± 14 mmHg, respectively, P < 0.005). Nevertheless, there was a strong linear relationship between FFRcor and FFRmyo in nonhyperemic conditions (R2 = 0.91, P < 0.005), as well as in hyperemic conditions (R2 = 0.87, P < 0.005). There was a strong linear relationship between "true" HMR and "estimated" HMR using either nonhyperemic (R2 = 0.86, P < 0.005) or hyperemic conditions (R2 = 0.85, P < 0.005) for correction. In contrast to a modest agreement between nonhyperemic Pw-corrected HMR and apparent HMR (R2 = 0.67, P < 0.005), hyperemic Pw-corrected HMR showed a strong agreement with apparent HMR (R2 = 0.88, P < 0.005). We validated the calculation method for Pw-corrected MR in a Doppler velocity-derived population. In addition, we found a significant impact of hyperemic conditions on the measurement of Pw and the derivation of Pw-corrected HMR.NEW & NOTEWORTHY The following are what is known: 1) wedge-pressure correction is often considered for the derivation of indices of minimal microvascular resistance, and 2) the Yong method for calculating wedge pressure-corrected index of microvascular resistance (IMR) without balloon inflation has never been validated in a Doppler-derived population and has not been tested under different physiological conditions. This study 1) adds validation for the Yong method for calculated wedge-pressure correction in a Doppler-derived study population and 2) shows significant influence of the physiological conditions on the derivation of coronary wedge pressure.


Subject(s)
Coronary Stenosis , Fractional Flow Reserve, Myocardial , Hyperemia , Humans , Coronary Vessels/diagnostic imaging , Heart , Blood Flow Velocity , Coronary Circulation/physiology , Coronary Angiography
8.
Int J Cardiol Heart Vasc ; 50: 101347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322017

ABSTRACT

Background: Coronary vasomotor dysfunction (CVDys) comprises coronary vasospasm (CVS) and/or coronary microvascular dysfunction (CMD) and is highly prevalent in patients with angina and non-obstructive coronary artery disease (ANOCA). Invasive coronary function testing (CFT) to diagnose CVDys is becoming more common, enabling pathophysiologic research of CVDys. This study aims to explore the electrophysiological characteristics of ANOCA patients with CVDys. Methods: We collected pre-procedural 12-lead electrocardiograms of ANOCA patients with CVS (n = 35), CMD (n = 24), CVS/CMD (n = 26) and patients without CVDys (CFT-, n = 23) who participated in the NL-CFT registry and underwent CFT. Heart axis and conduction times were compared between patients with CVS, CMD or CVS/CMD and patients without CVDys. Results: Heart axis, heart rate, PQ interval and QRS duration were comparable between the groups. A small prolongation of the QT-interval corrected with Bazett (QTcB) and Fridericia (QTcF) was observed in patients with CVDys compared to patients without CVDys (CVS vs CFT-: QTcB = 422 ± 18 vs 414 ± 18 ms (p = 0.14), QTcF = 410 ± 14 vs 406 ± 12 ms (p = 0.21); CMD vs CFT-: QTcB = 426 ± 17 vs 414 ± 18 ms (p = 0.03), QTcF = 413 ± 11 vs 406 ± 12 ms (p = 0.04); CVS/CMD vs CFT-: QTcB = 424 ± 17 vs 414 ± 18 ms (p = 0.05), QTcF = 414 ± 14 vs 406 ± 12 ms (p = 0.04)). Conclusions: Pre-procedural 12-lead electrocardiograms were comparable between patients with and without CVDys undergoing CFT except for a slightly longer QTc interval in patients with CVDys compared to patients without CVDys, suggesting limited cardiac remodeling in patients with CVDys.

9.
JACC Asia ; 3(6): 865-877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38155797

ABSTRACT

Background: Coronary pressure- and flow-derived parameters have prognostic value. Objectives: This study aims to investigate the individual and combined prognostic relevance of pressure and flow parameters reflecting resting and hyperemic conditions. Methods: A total of 1,971 vessels deferred from revascularization after invasive pressure and flow assessment were included from the international multicenter registry. Abnormal resting pressure and flow were defined as distal coronary pressure/aortic pressure ≤0.92 and high resting flow (1/resting mean transit time >2.4 or resting average peak flow >22.7 cm/s), and abnormal hyperemic pressure and flow as fractional flow reserve ≤0.80 and low hyperemic flow (1/hyperemic mean transit time <2.2 or hyperemic average peak flow <25.0 cm/s), respectively. The clinical endpoint was target vessel failure (TVF), myocardial infarction (MI), or cardiac death at 5 years. Results: The mean % diameter stenosis was 46.8% ± 16.5%. Abnormal pressure and flow were independent predictors of TVF and cardiac death/MI (all P < 0.05). The risk of 5-year TVF or MI/cardiac death increased proportionally with neither, either, and both abnormal resting pressure and flow, and abnormal hyperemic pressure and flow (all P for trend < 0.001). Abnormal resting pressure and flow were associated with a higher rate of TVF or MI/cardiac death in vessels with normal fractional flow reserve; this association was similar for abnormal hyperemic pressure and flow in vessels with normal resting distal coronary pressure/aortic pressure (all P < 0.05). Conclusions: Abnormal resting and hyperemic pressure and flow were independent prognostic predictors. The abnormal flow had an additive prognostic value for pressure in both resting and hyperemic conditions with complementary prognostic between resting and hyperemic parameters.

SELECTION OF CITATIONS
SEARCH DETAIL