Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Catal ; 14(17): 13246-13259, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39263539

ABSTRACT

CO is the key reaction intermediate in the Cu-catalyzed electroreduction of CO2 to products containing C-C bonds. Herein, we investigate the impact of the particle size of CuO precursors on the direct electroreduction of CO (CORR) to C2+ products. Flame spray pyrolysis was used to prepare CuO particles with sizes between 4 and 30 nm. In situ synchrotron wide-angle X-ray scattering (WAXS), quasi-in situ X-ray photoelectron spectroscopy, and transmission electron microscopy demonstrated that, during CORR, the CuO precursors transformed into ∼30 nm metallic Cu particles with a crystalline domain size of ∼17 nm, independently of the initial size of the CuO precursors. Despite their similar morphology, the samples presented different Faradaic efficiencies (FEs) to C2+ products. The Cu particles derived from medium-sized (10-20 nm) CuO precursors were the most selective to C2+ products (FE 60%), while those derived from CuO precursors smaller than 10 nm displayed a high FE to H2. As the oxidation state, the particle and the crystallite sizes of these samples were similar after CORR, the differences in product distribution are attributed to the type and density of surface defects on the metallic Cu particles, as supported by studying electrochemical oxidation of the reduced Cu particles during CV cycling in combination with synchrotron WAXS. Cu particles derived from <10 nm CuO contained a higher density of more under-coordinated defects, resulting in a higher FE to H2 than Cu particles derived from 10 to 30 nm CuO. Bulk oxidation was most prominent and stable for Cu particles derived from medium-sized CuO, which indicated the more disordered nature of their surface compared to Cu particles derived from 30 nm CuO precursors and their lower reactivity compared to Cu particles derived from small CuO. Cu particles derived from <10 nm CuO initially displayed intense redox behavior, quickly fading during subsequent CVs. Our results evidence the significant restructuring during the electrochemical reduction of CuO precursors into Cu particles of similar size. The differences in CORR performance of these Cu particles of similar size can be correlated to different surface structures, qualitatively resolved by studying surface and bulk oxidation, which affect the competition between CO dimerization to yield C2+ products and undesired H2 evolution.

2.
Catal Sci Technol ; 13(24): 6959-6967, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38089938

ABSTRACT

A variety of methods are employed to synthesize amorphous silica-alumina (ASA) to resolve the role of Al speciation and surface area in the catalytic performance in the Diels-Alder cycloaddition reaction of 2,5-dimethylfuran and ethylene to p-xylene. ASA was prepared by homogeneous deposition-precipitation (HDP) of Al3+ on ordered mesoporous silica, i.e., SBA-15 and OMS prepared under hydrothermal synthesis conditions using an imidazole-based template, and one-step flame spray pyrolysis (FSP). IR spectroscopy and 27Al MAS NMR showed that the resulting ASA represented a set of materials with distinct textural and acidic properties. ASA prepared by grafting Al to ordered mesoporous silica led to a much higher concentration of Brønsted acid sites (BAS). These samples performed much better in the DAC reaction, with p-xylene yields higher than those obtained with a HBeta zeolite benchmark. Materials with Al partially in the bulk of silica (OMS, FSP) and containing significant alumina domains are less acidic and exhibit much lower p-xylene yields. These findings point to the importance of Brønsted acidity for p-xylene formation. This study shows that careful design of the Al speciation can lead to amorphous silica-alumina with similar DAC performance to microporous zeolites.

3.
J Am Chem Soc ; 145(37): 20289-20301, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37677099

ABSTRACT

Despite the large number of studies on the catalytic hydrogenation of CO2 to CO and hydrocarbons by metal nanoparticles, the nature of the active sites and the reaction mechanism have remained unresolved. This hampers the development of effective catalysts relevant to energy storage. By investigating the structure sensitivity of CO2 hydrogenation on a set of silica-supported Ni nanoparticle catalysts (2-12 nm), we found that the active sites responsible for the conversion of CO2 to CO are different from those for the subsequent hydrogenation of CO to CH4. While the former reaction step is weakly dependent on the nanoparticle size, the latter is strongly structure sensitive with particles below 5 nm losing their methanation activity. Operando X-ray diffraction and X-ray absorption spectroscopy results showed that significant oxidation or restructuring, which could be responsible for the observed differences in CO2 hydrogenation rates, was absent. Instead, the decreased methanation activity and the related higher CO selectivity on small nanoparticles was linked to a lower availability of step edges that are active for CO dissociation. Operando infrared spectroscopy coupled with (isotopic) transient experiments revealed the dynamics of surface species on the Ni surface during CO2 hydrogenation and demonstrated that direct dissociation of CO2 to CO is followed by the conversion of strongly bonded carbonyls to CH4. These findings provide essential insights into the much debated structure sensitivity of CO2 hydrogenation reactions and are key for the knowledge-driven design of highly active and selective catalysts.

4.
Commun Chem ; 6(1): 199, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726395

ABSTRACT

Urea is a commonly used nitrogen fertiliser synthesised from ammonia and carbon dioxide using thermal catalysis. This process results in high carbon dioxide emissions associated with the required amounts of ammonia. Electrocatalysis provides an alternative method to urea production with reduced carbon emissions while utilising waste products like nitrate. This manuscript reports on urea synthesis from the electroreduction of nitrate and carbon dioxide using CuOxZnOy electrodes under mild conditions. Catalysts with different ratios of CuO and ZnO, synthesised via flame spray pyrolysis, were explored for the reaction. The results revealed that all the CuOxZnOy electrocatalyst compositions produce urea, but the efficiency strongly depends on the metal ratio composition of the catalysts. The CuO50ZnO50 composition had the best performance in terms of selectivity (41% at -0.8 V vs RHE) and activity (0.27 mA/cm2 at -0.8 V vs RHE) towards urea production. Thus, this material is one of the most efficient electrocatalysts for urea production reported so far. This study systematically evaluates bimetallic catalysts with varying compositions for urea synthesis from carbon dioxide and nitrate.

SELECTION OF CITATIONS
SEARCH DETAIL