Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Cancer Discov ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552005

ABSTRACT

Tumor-associated macrophages are transcriptionally heterogeneous, but the spatial distribution and cell interactions that shape macrophage tissue roles remain poorly characterized. Here, we spatially resolve five distinct human macrophage populations in normal and malignant human breast and colon tissue and reveal their cellular associations. This spatial map reveals that distinct macrophage populations reside in spatially segregated micro-environmental niches with conserved cellular compositions that are repeated across healthy and diseased tissue. We show that IL4I1+ macrophages phagocytose dying cells in areas with high cell turnover and predict good outcome in colon cancer. In contrast, SPP1+ macrophages are enriched in hypoxic and necrotic tumor regions and portend worse outcome in colon cancer. A subset of FOLR2+ macrophages is embedded in plasma cell niches. NLRP3+ macrophages co-localize with neutrophils and activate an inflammasome in tumors. Our findings indicate that a limited number of unique human macrophage niches function as fundamental building blocks in tissue.

2.
Nat Cancer ; 5(4): 642-658, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429415

ABSTRACT

Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.


Subject(s)
Immunotherapy , Sarcoma , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Sarcoma/therapy , Sarcoma/immunology , Sarcoma/genetics , Prognosis , Immunotherapy/methods , Machine Learning , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tumor-Associated Macrophages/immunology , Transcriptome , Gene Expression Regulation, Neoplastic
3.
Nature ; 619(7970): 595-605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468587

ABSTRACT

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Subject(s)
Maternal-Fetal Exchange , Trophoblasts , Uterus , Female , Humans , Pregnancy , Arteries/physiology , Decidua/blood supply , Decidua/cytology , Decidua/immunology , Decidua/physiology , Pregnancy Trimester, First/genetics , Pregnancy Trimester, First/metabolism , Pregnancy Trimester, First/physiology , Trophoblasts/cytology , Trophoblasts/immunology , Trophoblasts/physiology , Uterus/blood supply , Uterus/cytology , Uterus/immunology , Uterus/physiology , Maternal-Fetal Exchange/genetics , Maternal-Fetal Exchange/immunology , Maternal-Fetal Exchange/physiology , Time Factors , Proteomics , Gene Expression Profiling , Datasets as Topic , Gestational Age
4.
Cancer Res Commun ; 3(4): 697-708, 2023 04.
Article in English | MEDLINE | ID: mdl-37377751

ABSTRACT

The interaction between neoplastic and stromal cells within a tumor mass plays an important role in cancer biology. However, it is challenging to distinguish between tumor and stromal cells in mesenchymal tumors because lineage-specific cell surface markers typically used in other cancers do not distinguish between the different cell subpopulations. Desmoid tumors consist of mesenchymal fibroblast-like cells driven by mutations stabilizing beta-catenin. Here we aimed to identify surface markers that can distinguish mutant cells from stromal cells to study tumor-stroma interactions. We analyzed colonies derived from single cells from human desmoid tumors using a high-throughput surface antigen screen, to characterize the mutant and nonmutant cells. We found that CD142 is highly expressed by the mutant cell populations and correlates with beta-catenin activity. CD142-based cell sorting isolated the mutant population from heterogeneous samples, including one where no mutation was previously detected by traditional Sanger sequencing. We then studied the secretome of mutant and nonmutant fibroblastic cells. PTX3 is one stroma-derived secreted factor that increases mutant cell proliferation via STAT6 activation. These data demonstrate a sensitive method to quantify and distinguish neoplastic from stromal cells in mesenchymal tumors. It identifies proteins secreted by nonmutant cells that regulate mutant cell proliferation that could be therapeutically. Significance: Distinguishing between neoplastic (tumor) and non-neoplastic (stromal) cells within mesenchymal tumors is particularly challenging, because lineage-specific cell surface markers typically used in other cancers do not differentiate between the different cell subpopulations. Here, we developed a strategy combining clonal expansion with surface proteome profiling to identify markers for quantifying and isolating mutant and nonmutant cell subpopulations in desmoid tumors, and to study their interactions via soluble factors.


Subject(s)
Fibromatosis, Aggressive , Humans , beta Catenin/genetics , Cell Proliferation/genetics , Fibroblasts/metabolism , Fibromatosis, Aggressive/genetics , Stromal Cells/metabolism , Thromboplastin
5.
Clin Cancer Res ; 29(14): 2612-2620, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37130154

ABSTRACT

PURPOSE: Immune checkpoint inhibition has led to promising responses in soft tissue sarcomas (STS), but the majority of patients do not respond and biomarkers of response will be crucial. Local ablative therapies may augment systemic responses to immunotherapy. We evaluated circulating tumor DNA (ctDNA) as a biomarker of response in patients treated on a trial combining immunotherapy with local cryotherapy for advanced STS. PATIENTS AND METHODS: We enrolled 30 patients with unresectable or metastatic STS to a phase II clinical trial. Patients received ipilimumab and nivolumab for four doses followed by nivolumab alone with cryoablation performed between cycles 1 and 2. The primary endpoint was objective response rate (ORR) by 14 weeks. Personalized ctDNA analysis using bespoke panels was performed on blood samples collected prior to each immunotherapy cycle. RESULTS: ctDNA was detected in at least one sample for 96% of patients. Pretreatment ctDNA allele fraction was negatively associated with treatment response, progression-free survival (PFS), and overall survival (OS). ctDNA increased in 90% of patients from pretreatment to postcryotherapy, and patients with a subsequent decrease in ctDNA or undetectable ctDNA after cryotherapy had significantly better PFS. Of the 27 evaluable patients, the ORR was 4% by RECIST and 11% by irRECIST. Median PFS and OS were 2.7 and 12.0 months, respectively. No new safety signals were observed. CONCLUSIONS: ctDNA represents a promising biomarker for monitoring response to treatment in patients with advanced STS, warranting future prospective studies. Combining cryotherapy and immune checkpoint inhibitors did not increase the response rate of STS to immunotherapy.


Subject(s)
Circulating Tumor DNA , Sarcoma , Humans , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Cryotherapy , Immune Checkpoint Inhibitors/therapeutic use , Nivolumab , Prognosis , Prospective Studies , Sarcoma/genetics , Sarcoma/therapy
6.
JTO Clin Res Rep ; 4(4): 100498, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020927

ABSTRACT

Introduction: CD47 is a tumor antigen that inhibits phagocytosis leading to immune evasion. Anti-CD47 therapy is a promising new immunotherapy across numerous tumor types, but it has not been tested in thymic epithelial tumors (TETs): thymomas and thymic carcinomas. TETs are rare tumors that are difficult to treat, especially with programmed cell death protein 1/programmed death-ligand 1 checkpoint inhibitors, owing to the excessive rates of immune-related adverse events. This study investigated the levels of CD47 expression in TETs to explore the possibility of anti-CD47 therapy. Methods: A total of 67 thymic tumors (63 thymomas and 4 thymic carcinomas) and 14 benign thymus controls and their clinical data were included. Samples were stained for CD47 expression (rabbit monoclonal antibody SP279, Abcam, Waltham, MA) and scored for both intensity and H-score (intensity multiplied by the percentage of tumor involved). Intensity was defined as follows: 0 = none, 1 = weak, 2 = moderate, and 3 = strong. H-scores ranged from 0 to 300. Samples with an intensity score below 2 or an H-score below 150 were considered CD47low, whereas the rest were CD47high. Results: Compared with normal thymic tissues, TETs were more frequently CD47 positive and had significantly higher levels of CD47 expression. CD47 was positive in 79.1% of TETs compared with 57.1% of normal thymus. The level of CD47 expression was 16-fold higher in TETs (mean H-score 75.0 versus 4.6, p = 0.003). Multivariate analysis adjusted for age, sex, stage, resection status, and performance status revealed that CD47-high tumors were highly correlated with WHO histology type (p = 0.028). The most frequent CD47high tumors, in contrast to CD47low tumors, were types A (28.6% versus 7.5%) and AB (57.1% versus 13.2%), and the least frequent were B1 (7.1% versus 24.5%), B2 (0% versus 35.8%), B3 (7.1% versus 11.3%), and C (0% versus 7.5%). Conclusions: In contrast to normal thymus, TETs had significantly higher levels of CD47 expression. Tumor samples with high CD47 expression were mostly WHO types A and AB. This is the first study to explore CD47 expression in thymic cancers and lends support for ongoing investigation of anti-CD47 macrophage checkpoint inhibitor therapy in these tumors.

7.
Cell Rep ; 42(1): 111990, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640300

ABSTRACT

Small cell lung cancer (SCLC) is a lethal form of lung cancer. Here, we develop a quantitative multiplexed approach on the basis of lentiviral barcoding with somatic CRISPR-Cas9-mediated genome editing to functionally investigate candidate regulators of tumor initiation and growth in genetically engineered mouse models of SCLC. We found that naphthalene pre-treatment enhances lentiviral vector-mediated SCLC initiation, enabling high multiplicity of tumor clones for analysis through high-throughput sequencing methods. Candidate drivers of SCLC identified from a meta-analysis across multiple human SCLC genomic datasets were tested using this approach, which defines both positive and detrimental impacts of inactivating 40 genes across candidate pathways on SCLC development. This analysis and subsequent validation in human SCLC cells establish TSC1 in the PI3K-AKT-mTOR pathway as a robust tumor suppressor in SCLC. This approach should illuminate drivers of SCLC, facilitate the development of precision therapies for defined SCLC genotypes, and identify therapeutic targets.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Mice , Animals , Humans , Small Cell Lung Carcinoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/pathology , Genes, Tumor Suppressor , Genomics
8.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711732

ABSTRACT

Tumor-associated macrophages (TAMs) display heterogeneous phenotypes. Yet the exact tissue cues that shape macrophage functional diversity are incompletely understood. Here we discriminate, spatially resolve and reveal the function of five distinct macrophage niches within malignant and benign breast and colon tissue. We found that SPP1 TAMs reside in hypoxic and necrotic tumor regions, and a novel subset of FOLR2 tissue resident macrophages (TRMs) supports the plasma cell tissue niche. We discover that IL4I1 macrophages populate niches with high cell turnover where they phagocytose dying cells. Significantly, IL4I1 TAMs abundance correlates with anti-PD1 treatment response in breast cancer. Furthermore, NLRP3 inflammasome activation in NLRP3 TAMs correlates with neutrophil infiltration in the tumors and is associated with poor outcome in breast cancer patients. This suggests the NLRP3 inflammasome as a novel cancer immunetherapy target. Our work uncovers context-dependent roles of macrophage subsets, and suggests novel predictive markers and macrophage subset-specific therapy targets.

9.
Pract Radiat Oncol ; 13(3): e301-e307, 2023.
Article in English | MEDLINE | ID: mdl-36460182

ABSTRACT

PURPOSE: Tenosynovial giant cell tumor (TGCT) is a rare proliferative disorder of synovial membrane that previously was known as pigmented villonodular synovitis. Primary treatment involves surgical resection; however, complete removal of all disease involvement is difficult to achieve. Radiation may be useful to reduce the risk of recurrence. We report and update our institutional experience treating diffuse and recurrent TGCT with postsurgical external beam radiation therapy. METHODS AND MATERIALS: We performed a retrospective chart review of 30 patients with TGCT from 2003 to 2019 treated with radiation therapy. Each patient was evaluated for demographics, radiation treatment parameters, surgical management, complications, and outcome. RESULTS: With mean follow-up of 82 months (range, 3-211), 24 patients (80%) who underwent surgery followed by radiation therapy did not experience any further relapse, and all 30 patients achieved local control (100%) with additional salvage therapy after radiation therapy. The most common site of disease was the knee (n = 22, 73%), followed by the ankle (n = 5, 16%) and the hand (n = 3, 10%). Seven patients (24%) presented at time of initial diagnosis and 23 (76%) presented with recurrent disease after surgical resection, with an average of 2.6 surgical procedures before radiation therapy. After resection, 18 of 30 patients (67%) demonstrated residual TGCT by imaging. The median radiation therapy dose delivered was 36 Gy (range, 34-36 Gy) in 1.8 to 2.5 Gy/fractions for 4 weeks. In the assessment of posttreatment joint function, 26 sites (86%) exhibited excellent or good function, 2 (7%) fair, and 2 poor (7%) as determined by our scoring system. There were no cases of radiation-associated malignancy. CONCLUSIONS: Among patients with diffuse or recurrent TGCT, postsurgical external beam radiation therapy provided excellent local control and good functional status, with minimal treatment-related complications. Postsurgical radiation therapy is a well-tolerated noninvasive treatment that should be considered after maximal cytoreductive resection to prevent disease progression and recurrence.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Synovitis, Pigmented Villonodular , Humans , Retrospective Studies , Giant Cell Tumor of Tendon Sheath/radiotherapy , Giant Cell Tumor of Tendon Sheath/surgery , Synovitis, Pigmented Villonodular/radiotherapy , Synovitis, Pigmented Villonodular/surgery , Synovitis, Pigmented Villonodular/pathology , Disease Progression
10.
Cancer Treat Rev ; 112: 102491, 2023 01.
Article in English | MEDLINE | ID: mdl-36502615

ABSTRACT

Tenosynovial giant cell tumour (TGCT) is a rare, locally aggressive, mesenchymal tumor arising from the joints, bursa and tendon sheaths. TGCT comprises a nodular- and a diffuse-type, with the former exhibiting mostly indolent course and the latter a locally aggressive behavior. Although usually not life-threatening, TGCT may cause chronic pain and adversely impact function and quality of life (QoL). CSFR1 inhibitors are effective with benefit on symptoms and QoL but are not available in most countries. The degree of uncertainty in selecting the most appropriate therapy and the lack of guidelines on the clinical management of TGCT make the adoption of new treatments inconsistent across the world, with suboptimal outcomes for patients. A global consensus meeting was organized in June 2022, involving experts from several disciplines and patient representatives from SPAGN to define the best evidence-based practice for the optimal approach to TGCT and generate the recommendations presented herein.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Quality of Life , Humans , Consensus , Giant Cell Tumor of Tendon Sheath/drug therapy , Giant Cell Tumor of Tendon Sheath/pathology
11.
Clin Cancer Res ; 28(22): 4934-4946, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36007098

ABSTRACT

PURPOSE: A major component of cells in tenosynovial giant cell tumor (TGCT) consists of bystander macrophages responding to CSF1 that is overproduced by a small number of neoplastic cells with a chromosomal translocation involving the CSF1 gene. An autocrine loop was postulated where the neoplastic cells would be stimulated through CSF1R expressed on their surface. Here, we use single-cell RNA sequencing (scRNA-seq) to investigate cellular interactions in TGCT. EXPERIMENTAL DESIGN: A total of 18,788 single cells from three TGCT and two giant cell tumor of bone (GCTB) samples underwent scRNA-seq. The three TGCTs were additionally analyzed using long-read RNA sequencing. Immunofluorescence and IHC for a range of markers were used to validate and extend the scRNA-seq findings. RESULTS: Two recurrent neoplastic cell populations were identified in TGCT that are highly similar to nonneoplastic synoviocytes. We identified GFPT2 as a marker that highlights the neoplastic cells in TCGT. We show that the neoplastic cells themselves do not express CSF1R. We identified overlapping MAB features between the giant cells in TGCT and GCTB. CONCLUSIONS: The neoplastic cells in TGCT are highly similar to nonneoplastic synoviocytes. The lack of CSF1R on the neoplastic cells indicates they may be unaffected by current therapies. High expression of GFPT2 in the neoplastic cells is associated with activation of the YAP1/TAZ pathway. In addition, we identified expression of the platelet-derived growth factor receptor in the neoplastic cells. These findings suggest two additional pathways to target in this tumor.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Humans , Giant Cell Tumor of Tendon Sheath/genetics , Giant Cell Tumor of Tendon Sheath/metabolism , Giant Cell Tumor of Tendon Sheath/pathology , Translocation, Genetic
12.
Lab Invest ; 102(7): 762-770, 2022 07.
Article in English | MEDLINE | ID: mdl-35351966

ABSTRACT

Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) is a form of mass spectrometry imaging that uses metal labeled antibodies and secondary ion mass spectrometry to image dozens of proteins simultaneously in the same tissue section. Working with the National Cancer Institute's (NCI) Cancer Immune Monitoring and Analysis Centers (CIMAC), we undertook a validation study, assessing concordance across a dozen serial sections of a tissue microarray of 21 samples that were independently processed and imaged by MIBI-TOF or single-plex immunohistochemistry (IHC) over 12 days. Pixel-level features were highly concordant across all 16 targets assessed in both staining intensity (R2 = 0.94 ± 0.04) and frequency (R2 = 0.95 ± 0.04). Comparison to digitized, single-plex IHC on adjacent serial sections revealed similar concordance (R2 = 0.85 ± 0.08) as well. Lastly, automated segmentation and clustering of eight cell populations found that cell frequencies between serial sections yielded an average correlation of R2 = 0.94 ± 0.05. Taken together, we demonstrate that MIBI-TOF, with well-vetted reagents and automated analysis, can generate consistent and quantitative annotations of clinically relevant cell states in archival human tissue, and more broadly, present a scalable framework for benchmarking multiplexed IHC approaches.


Subject(s)
Diagnostic Imaging , Neoplasms , Antibodies , Diagnostic Imaging/methods , Humans , Immunohistochemistry , Ions , Mass Spectrometry/methods
14.
Nat Immunol ; 23(2): 318-329, 2022 02.
Article in English | MEDLINE | ID: mdl-35058616

ABSTRACT

Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.


Subject(s)
Granuloma/immunology , Tuberculosis/immunology , B7-H1 Antigen/immunology , Cells, Cultured , Cytokines/immunology , Gene Expression Profiling/methods , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Lung/immunology , Mycobacterium tuberculosis/immunology , Myeloid Cells/immunology
15.
PLoS One ; 17(1): e0262272, 2022.
Article in English | MEDLINE | ID: mdl-34986184

ABSTRACT

High-level amplification of MDM2 and other genes in the 12q13-15 locus is a hallmark genetic feature of well-differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS, respectively). Detection of this genomic aberration in plasma cell-free DNA may be a clinically useful assay for non-invasive distinction between these liposarcomas and other retroperitoneal tumors in differential diagnosis, and might be useful for the early detection of disease recurrence. In this study, we performed shallow whole genome sequencing of cell-free DNA extracted from 10 plasma samples from 3 patients with DDLPS and 1 patient with WDLPS. In addition, we studied 31 plasma samples from 11 patients with other types of soft tissue tumors. We detected MDM2 amplification in cell-free DNA of 2 of 3 patients with DDLPS. By applying a genome-wide approach to the analysis of cell-free DNA, we also detected amplification of other genes that are known to be recurrently affected in DDLPS. Based on the analysis of one patient with DDLPS with longitudinal plasma samples available, we show that tracking MDM2 amplification in cell-free DNA may be potentially useful for evaluation of response to treatment. The patient with WDLPS and patients with other soft tissue tumors in differential diagnosis were negative for the MDM2 amplification in cell-free DNA. In summary, we demonstrate the feasibility of detecting amplification of MDM2 and other DDLPS-associated genes in plasma cell-free DNA using technology that is already routinely applied for other clinical indications. Our results may have clinical implications for improved diagnosis and surveillance of patients with retroperitoneal tumors.


Subject(s)
Cell Dedifferentiation/genetics , Cell-Free Nucleic Acids/genetics , Gene Amplification/genetics , Liposarcoma/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Aged , Cell Differentiation/genetics , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Soft Tissue Neoplasms/genetics , Whole Genome Sequencing/methods
16.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34789568

ABSTRACT

Cancer precision medicine implies identification of tumor-specific vulnerabilities associated with defined oncogenic pathways. Desmoid tumors are soft-tissue neoplasms strictly driven by Wnt signaling network hyperactivation. Despite this clearly defined genetic etiology and the strict and unique implication of the Wnt/ß-catenin pathway, no specific molecular targets for these tumors have been identified. To address this caveat, we developed fast, efficient, and penetrant genetic Xenopus tropicalis desmoid tumor models to identify and characterize drug targets. We used multiplexed CRISPR/Cas9 genome editing in these models to simultaneously target a tumor suppressor gene (apc) and candidate dependency genes. Our methodology CRISPR/Cas9 selection-mediated identification of dependencies (CRISPR-SID) uses calculated deviations between experimentally observed gene editing outcomes and deep-learning-predicted double-strand break repair patterns to identify genes under negative selection during tumorigenesis. This revealed EZH2 and SUZ12, both encoding polycomb repressive complex 2 components, and the transcription factor CREB3L1 as genetic dependencies for desmoid tumors. In vivo EZH2 inhibition by Tazemetostat induced partial regression of established autochthonous tumors. In vitro models of patient desmoid tumor cells revealed a direct effect of Tazemetostat on Wnt pathway activity. CRISPR-SID represents a potent approach for in vivo mapping of tumor vulnerabilities and drug target identification.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/isolation & purification , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Editing/methods , Abdominal Neoplasms/genetics , Adenomatous Polyposis Coli/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein , Fibromatosis, Aggressive/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins , Oncogenes , Polycomb Repressive Complex 2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway , Xenopus , beta Catenin
17.
Cell ; 184(21): 5482-5496.e28, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597583

ABSTRACT

Determining how cells vary with their local signaling environment and organize into distinct cellular communities is critical for understanding processes as diverse as development, aging, and cancer. Here we introduce EcoTyper, a machine learning framework for large-scale identification and validation of cell states and multicellular communities from bulk, single-cell, and spatially resolved gene expression data. When applied to 12 major cell lineages across 16 types of human carcinoma, EcoTyper identified 69 transcriptionally defined cell states. Most states were specific to neoplastic tissue, ubiquitous across tumor types, and significantly prognostic. By analyzing cell-state co-occurrence patterns, we discovered ten clinically distinct multicellular communities with unexpectedly strong conservation, including three with myeloid and stromal elements linked to adverse survival, one enriched in normal tissue, and two associated with early cancer development. This study elucidates fundamental units of cellular organization in human carcinoma and provides a framework for large-scale profiling of cellular ecosystems in any tissue.


Subject(s)
Neoplasms/pathology , Tumor Microenvironment , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Inflammation/pathology , Ligands , Neoplasms/genetics , Phenotype , Prognosis , Transcription, Genetic
18.
NPJ Genom Med ; 6(1): 30, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941787

ABSTRACT

Metabolic reprogramming of tumor cells and the increase of glucose uptake is one of the hallmarks of cancer. In order to identify metabolic pathways activated in leiomyosarcoma (LMS), we analyzed transcriptomic profiles of distinct subtypes of LMS in several datasets. Primary, recurrent and metastatic tumors in the subtype 2 of LMS showed consistent enrichment of genes involved in hexosamine biosynthesis pathway (HBP). We demonstrated that glutamine-fructose-6-phosphate transaminase 2 (GFPT2), the rate-limiting enzyme in HBP, is expressed on protein level in a subset of LMS and the expression of this enzyme is frequently retained in patient-matched primary and metastatic tumors. In a new independent cohort of 327 patients, we showed that GFPT2 is associated with poor outcome of uterine LMS but not extra-uterine LMS. Based on the analysis of a small group of patients studied by 18F-FDG-PET imaging, we propose that strong expression of GFPT2 in primary LMS may be associated with high metabolic activity. Our data suggest that HBP is a potential new therapeutic target in one of the subtypes of LMS.

19.
Cancer ; 127(15): 2666-2673, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33788262

ABSTRACT

BACKGROUND: Leiomyosarcoma (LMS) is the most common soft tissue and uterine sarcoma, but no standard therapy is available for recurrent or metastatic LMS. TP53, p16/RB1, and PI3K/mTOR pathway dysregulations are recurrent events, and some LMS express estrogen receptor (ER) and/or progesterone receptor (PR). To characterize relationships between these pathway perturbations, the authors evaluated protein expression in soft tissue and uterine nonprimary leiomyosarcoma (np-LMS), including local recurrences and distant metastases. METHODS: TP53, RB1, p16, and PTEN expression aberrations were determined by immunohistochemistry (IHC) in tissue microarrays (TMAs) from 227 np-LMS and a comparison group of 262 primary leiomyosarcomas (p-LMS). Thirty-five of the np-LMS had a matched p-LMS specimen in the TMAs. Correlative studies included differentiation scoring, ER and PR IHC, and CDKN2A/p16 fluorescence in situ hybridization. RESULTS: Dysregulation of TP53, p16/RB1, and PTEN was demonstrated in 90%, 95%, and 41% of np-LMS, respectively. PTEN inactivation was more common in soft tissue np-LMS than uterine np-LMS (55% vs 31%; P = .0005). Moderate-strong ER expression was more common in uterine np-LMS than soft tissue np-LMS (50% vs 7%; P < .0001). Co-inactivation of TP53 and RB1 was found in 81% of np-LMS and was common in both soft tissue and uterine np-LMS (90% and 74%, respectively). RB1, p16, and PTEN aberrations were nearly always conserved in p-LMS and np-LMS from the same patients. CONCLUSIONS: These studies show that nearly all np-LMS have TP53 and/or RB1 aberrations. Therefore, therapies targeting cell cycle and DNA damage checkpoint vulnerabilities should be prioritized for evaluations in LMS.


Subject(s)
Genes, p53 , Leiomyosarcoma , Retinoblastoma Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Uterine Neoplasms , Female , Genes, p16 , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , PTEN Phosphohydrolase/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology
20.
Clin Cancer Res ; 27(6): 1706-1719, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33451979

ABSTRACT

PURPOSE: Gastrointestinal stromal tumor (GIST) arises from interstitial cells of Cajal (ICC) or their precursors, which are present throughout the gastrointestinal tract. Although gastric GIST is commonly indolent and small intestine GIST more aggressive, a molecular understanding of disease behavior would inform therapy decisions in GIST. Although a core transcription factor (TF) network is conserved across GIST, accessory TFs HAND1 and BARX1 are expressed in a disease state-specific pattern. Here, we characterize two divergent transcriptional programs maintained by HAND1 and BARX1, and evaluate their association with clinical outcomes. EXPERIMENTAL DESIGN: We evaluated RNA sequencing and TF chromatin immunoprecipitation with sequencing in GIST samples and cultured cells for transcriptional programs associated with HAND1 and BARX1. Multiplexed tissue-based cyclic immunofluorescence and IHC evaluated tissue- and cell-level expression of TFs and their association with clinical factors. RESULTS: We show that HAND1 is expressed in aggressive GIST, modulating KIT and core TF expression and supporting proliferative cellular programs. In contrast, BARX1 is expressed in indolent and micro-GISTs. HAND1 and BARX1 expression were superior predictors of relapse-free survival, as compared with standard risk stratification, and they predict progression-free survival on imatinib. Reflecting the developmental origins of accessory TF programs, HAND1 was expressed solely in small intestine ICCs, whereas BARX1 expression was restricted to gastric ICCs. CONCLUSIONS: Our results define anatomic and transcriptional determinants of GIST and molecular origins of clinical phenotypes. Assessment of HAND1 and BARX1 expression in GIST may provide prognostic information and improve clinical decisions on the administration of adjuvant therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/metabolism , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/pathology , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers, Tumor/genetics , Follow-Up Studies , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Prognosis , RNA-Seq , Survival Rate , Transcription Factors/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...