Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 327(2): E172-E182, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38836779

ABSTRACT

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r = 0.49; P < 0.001) and negatively related to resting heart rate (HR, r = -0.39; P < 0.001), which was also negatively related to expression of type I muscle fibers (r = -0.41; P < 0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59 ± 6%; HR = 57 ± 9 beats/min; SIgalvin = 1.8 ± 0.7 units) or low percentage of type I fibers (30 ± 6%; HR = 71 ± 11; SIgalvin = 0.8 ± 0.3 units; P < 0.001 for all variables vs. first group). eNOS expression was 1) higher in subjects with high type I expression; 2) almost twofold higher in pools of type I versus II fibers; 3) only detected in capillaries surrounding muscle fibers; and 4) linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.NEW & NOTEWORTHY Insulin resistance (IR) is a risk factor for the development of several metabolic diseases. In healthy young individuals, an elevated heart rate (HR) correlates with low insulin sensitivity and high expression of type II skeletal muscle fibers, which express low levels of endothelial nitric oxide synthase (eNOS) and, hence, a limited capacity to induce vasodilation in response to insulin. Early targeting of the autonomic nervous system and microvasculature may attenuate development of diseases stemming from insulin resistance.


Subject(s)
Heart Rate , Insulin Resistance , Muscle, Skeletal , Nitric Oxide Synthase Type III , Humans , Insulin Resistance/physiology , Nitric Oxide Synthase Type III/metabolism , Male , Heart Rate/physiology , Young Adult , Muscle, Skeletal/metabolism , Female , Adult , Glucose Tolerance Test , Muscle Fibers, Slow-Twitch/metabolism , Insulin/metabolism , Insulin/blood
2.
Clin Biomech (Bristol, Avon) ; 107: 106028, 2023 07.
Article in English | MEDLINE | ID: mdl-37331152

ABSTRACT

BACKGROUND: Due to anatomical deviations, assumptions of the conventional calibration method for gait analysis may be violated in individuals with rotational deformities of the femur. Functional calibration methods were compared with conventional methods in this group for 1) localization of the hip joint center and orientation of the knee axis, and 2) gait kinematics. METHODS: Twenty-four adolescents with idiopathic rotational deformity of the femur underwent gait analysis and a CT scan. During standing, distance between hip joint centers and knee axis orientation were compared between calibration methods, with CT serving as reference for hip joint center estimation. Gait kinematics were compared using statistical parametric mapping. FINDINGS: The conventional calibration method estimated the hip joint center closer to the CT reference (4±12 mm more lateral) than the functional calibration method (26 ± 20 mm more lateral). Orientation of the knee joint axis was 2.6° less internal in the functional calibration method. During gait, statistical parametric mapping revealed significantly more hip flexion, less external hip rotation during the swing phase, less knee varus-valgus motion, and larger knee flexion angles when applying the functional method. INTERPRETATION: Functional calibration methods were less accurate in determining the hip joint center location than the conventional calibration method and resulted in a knee joint axis that was less internally rotated. Importantly, there was less knee joint angle crosstalk during gait when using the functional method. Although differences between methods on gait kinematics were within clinically acceptable limits for the sagittal plane, relatively larger differences on transversal hip kinematics may hold clinical importance.


Subject(s)
Femur , Gait , Humans , Adolescent , Biomechanical Phenomena , Calibration , Range of Motion, Articular , Femur/diagnostic imaging , Knee Joint/diagnostic imaging , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL