Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
CRISPR J ; 5(4): 571-585, 2022 08.
Article in English | MEDLINE | ID: mdl-35856642

ABSTRACT

Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , DNA/genetics , DNA/metabolism , DNA, Complementary , Humans , Oligonucleotides/genetics
2.
PLoS One ; 12(9): e0183774, 2017.
Article in English | MEDLINE | ID: mdl-28931009

ABSTRACT

Regulation of our water homeostasis is fine-tuned by dynamic translocation of Aquaporin-2 (AQP2)-bearing vesicles to and from the plasma membrane of renal principal cells. Whereas binding of vasopressin to its type-2 receptor initiates a cAMP-protein kinase A cascade and AQP2 translocation to the apical membrane, this is counteracted by protein kinase C-activating hormones, resulting in ubiquitination-dependent internalization of AQP2. The proteins targeting AQP2 for ubiquitin-mediated degradation are unknown. In collecting duct mpkCCD cells, siRNA knockdown of NEDD4 and NEDD4L E3 ligases yielded increased AQP2 abundance, but they did not bind AQP2. Membrane Yeast Two-Hybrid assays using full-length AQP2 as bait, identified NEDD4 family interacting protein 2 (NDFIP2) to bind AQP2. NDFIP2 and its homologue NDFIP1 have PY motifs by which they bind NEDD4 family members and bring them close to target proteins. In HEK293 cells, NDFIP1 and NDFIP2 bound AQP2 and were essential for NEDD4/NEDD4L-mediated ubiquitination and degradation of AQP2, an effect not observed with PY-lacking NDFIP1/2 proteins. In mpkCCD cells, downregulation of NDFIP1, NEDD4 and NEDD4L, but not NDFIP2, increased AQP2 abundance. In mouse kidney, Ndfip1 and Ndfip2 mRNA distribution was similar and high in proximal tubules and collecting ducts, which was also found for NDFIP1 proteins. Our results reveal that NEDD4/NEDD4L mediate ubiquitination and degradation of AQP2, but that NDFIP proteins are needed to connect NEDD4/NEDD4L to AQP2. As NDFIP1/2 bind many NEDD4 family E3 ligases, which are implicated in several cellular processes, NDFIP1/2 may be the missing link for AQP2 ubiquitination and degradation from different subcellular locations.


Subject(s)
Aquaporin 2/metabolism , Carrier Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Down-Regulation , Endosomal Sorting Complexes Required for Transport/antagonists & inhibitors , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells , Humans , Immunoprecipitation , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Nedd4 Ubiquitin Protein Ligases , Nephrons/metabolism , Protein Binding , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitination
3.
Nephrol Dial Transplant ; 27(12): 4389-97, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22778181

ABSTRACT

BACKGROUND: Mutations in the aquaporin-2 (AQP2) gene cause nephrogenic diabetes insipidus (NDI), a renal disorder characterized by polyuria due to a lacking antidiuretic response to vasopressin. While most AQP2 mutants in recessive NDI are misfolded and retained in the endoplasmic reticulum, AQP2-P262L in NDI was impaired in its vasopressin-dependent translocation from vesicles to the plasma membrane. METHODS: Vasopressin-induced translocation of AQP2 coincides with AQP2 phosphorylation at S256, S264 and T269 and dephosphorylation at S261. Since P262 lies adjacent to S261, we tested whether a changed phosphorylation could underlie AQP-P262L missorting in NDI. RESULTS: In polarized cells, AQP2-P262L expressed as a double 29/30 kDa band, whereas wt-AQP2 expressed only as a 29 kDa band. Phosphatase treatment revealed that the 30 kDa AQP2-P262L band was due to changed phosphorylation. The use of newly developed phospho-specific antibodies showed that forskolin not only increased pS256 and pT269, but, in contrast to wt-AQP2, also pS261 in AQP2-P262L. The expression of AQP2-P262L proteins in which S261 phosphorylation was prevented (S261A), however, was still missorted to vesicles/basolateral membrane, despite the absence of the 30 kDa band. CONCLUSIONS: Together, our data reveal that vasopressin induces instead of reduces the phosphorylation of S261 in AQP2-P262L, but it remains to be established whether the changed phosphorylation causes its missorting in NDI.


Subject(s)
Aquaporin 2/genetics , Aquaporin 2/metabolism , Diabetes Insipidus, Nephrogenic/genetics , Mutation , Vasopressins/physiology , Animals , Cells, Cultured , Genes, Recessive , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...