Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol Exp ; 8(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38165522

ABSTRACT

BACKGROUND: Pelvic morphological parameters on magnetic resonance imaging (MRI), such as the membranous urethral length (MUL), can predict urinary incontinence after radical prostatectomy but are prone to interobserver disagreement. Our objective was to improve interobserver agreement among radiologists in measuring pelvic parameters using deep learning (DL)-based segmentation of pelvic structures on MRI scans. METHODS: Preoperative MRI was collected from 167 prostate cancer patients undergoing radical prostatectomy within our regional multicentric cohort. Two DL networks (nnU-Net) were trained on coronal and sagittal scans and evaluated on a test cohort using an 80/20% train-test split. Pelvic parameters were manually measured by three abdominal radiologists on raw MRI images and with the use of DL-generated segmentations. Automated measurements were also performed for the pelvic parameters. Interobserver agreement was evaluated using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. RESULTS: The DL models achieved median Dice similarity coefficient (DSC) values of 0.85-0.97 for coronal structures and 0.87-0.98 for sagittal structures. When radiologists used DL-generated segmentations of pelvic structures, the interobserver agreement for sagittal MUL improved from 0.64 (95% confidence interval 0.28-0.83) to 0.91 (95% CI 0.84-0.95). Furthermore, there was an increase in ICC values for the obturator internus muscle from 0.74 (95% CI 0.42-0.87) to 0.86 (95% CI 0.75-0.92) and for the levator ani muscle from 0.40 (95% CI 0.05-0.66) to 0.61 (95% CI 0.31-0.78). CONCLUSIONS: DL-based automated segmentation of pelvic structures improved interobserver agreement in measuring pelvic parameters on preoperative MRI scans. RELEVANCE STATEMENT: The implementation of deep learning segmentations allows for more consistent measurements of pelvic parameters by radiologists. Standardized measurements are crucial for incorporating these parameters into urinary continence prediction models. KEY POINTS: • DL-generated segmentations improve interobserver agreement for pelvic measurements among radiologists. • Membranous urethral length measurement improved from substantial to almost perfect agreement. • Artificial intelligence enhances objective pelvic parameter assessment for continence prediction models.


Subject(s)
Prostatic Neoplasms , Urinary Incontinence , Male , Humans , Artificial Intelligence , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Prostatectomy , Urinary Incontinence/diagnostic imaging
3.
Cancers (Basel) ; 15(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38001712

ABSTRACT

Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.

4.
Phys Imaging Radiat Oncol ; 26: 100453, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37312973

ABSTRACT

Background and purpose: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. Materials and methods: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. Results: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90-0.93) for the PB, 0.90 (IQR: 0.86-0.92) for the CCs, 0.79 (IQR: 0.77-0.83) for the IPAs, and 0.77 (IQR: 0.72-0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. Conclusions: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy.

5.
Viruses ; 14(12)2022 11 28.
Article in English | MEDLINE | ID: mdl-36560665

ABSTRACT

Rabies virus (RABV) has a broad host range and infects multiple cell types throughout the infection cycle. Next-generation sequencing (NGS) and minor variant analysis are powerful tools for studying virus populations within specific hosts and tissues, leading to novel insights into the mechanisms of host-switching and key factors for infecting specific cell types. In this study we investigated RABV populations and minor variants in both original (non-passaged) samples and in vitro-passaged isolates of various CNS regions (hippocampus, medulla oblongata and spinal cord) of a fatal human rabies case, and of multiple CNS and non-CNS tissues of experimentally infected mice. No differences in virus populations were detected between the human CNS regions, and only one non-synonymous single nucleotide polymorphism (SNP) was detected in the fifth in vitro passage of virus isolated from the spinal cord. However, the appearance of this SNP shows the importance of sequencing newly passaged virus stocks before further use. Similarly, we did not detect apparent differences in virus populations isolated from different CNS and non-CNS tissues of experimentally infected mice. Sequencing of viruses obtained from pharyngeal swab and salivary gland proved difficult, and we propose methods for improving sampling.


Subject(s)
Rabies virus , Rabies , Humans , Mice , Animals , Central Nervous System , Spinal Cord
SELECTION OF CITATIONS
SEARCH DETAIL
...