Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
PLoS One ; 17(12): e0278308, 2022.
Article in English | MEDLINE | ID: mdl-36454872

ABSTRACT

In young adults, overweight and hypertension possibly already trigger cardiac remodeling as seen in mature adults, potentially overlapping non-ischemic cardiomyopathy findings. To this end, in young overweight and hypertensive adults, we aimed to investigate changes in left ventricular mass (LVM) and cardiac volumes, and the impact of different body scales for indexation. We also aimed to explore the presence of myocardial fibrosis, fat and edema, and changes in cellular mass with extracellular volume (ECV), T1 and T2 tissue characteristics. We prospectively recruited 126 asymptomatic subjects (51% male) aged 27-41 years for 3T cardiac magnetic resonance imaging: 40 controls, 40 overweight, 17 hypertensive and 29 hypertensive overweight. Myocyte mass was calculated as (100%-ECV) * height2.7-indexed LVM. Absolute LVM was significantly increased in overweight, hypertensive and hypertensive overweight groups (104 ± 23, 109 ± 27, 112 ± 26 g) versus controls (87 ± 21 g), with similar volumes. Body surface area (BSA) indexation resulted in LVM normalization in overweights (48 ± 8 g/m2) versus controls (47 ± 9 g/m2), but not in hypertensives (55 ± 9 g/m2) and hypertensive overweights (52 ± 9 g/m2). BSA-indexation overly decreased volumes in overweight versus normal-weight (LV end-diastolic volume; 80 ± 14 versus 92 ± 13 ml/m2), where height2.7-indexation did not. All risk groups had lower ECV (23 ± 2%, 23 ± 2%, 23 ± 3%) than controls (25 ± 2%) (P = 0.006, P = 0.113, P = 0.039), indicating increased myocyte mass (16.9 ± 2.7, 16.5 ± 2.3, 18.1 ± 3.5 versus 14.0 ± 2.9 g/m2.7). Native T1 values were similar. Lower T2 values in the hypertensive overweight group related to heart rate. In conclusion, BSA-indexation masks hypertrophy and causes volume overcorrection in overweight subjects compared to controls, height2.7-indexation therefore seems advisable.


Subject(s)
Hypertension , Overweight , Adult , Humans , Male , Young Adult , Female , Overweight/complications , Overweight/diagnostic imaging , Hypertension/complications , Hypertension/diagnostic imaging , Magnetic Resonance Imaging , Morbidity , Heart
2.
Front Cardiovasc Med ; 9: 1037500, 2022.
Article in English | MEDLINE | ID: mdl-36451924

ABSTRACT

Molecular phenotyping by imaging of intact tissues has been used to reveal 3D molecular and structural coherence in tissue samples using tissue clearing techniques. However, clearing and imaging of cardiac tissue remains challenging for large-scale (>100 mm3) specimens due to sample distortion. Thus, directly assessing tissue microstructural geometric properties confounded by distortion such as cardiac helicity has been limited. To combat sample distortion, we developed a passive CLARITY technique (Pocket CLARITY) that utilizes a permeable cotton mesh pocket to encapsulate the sample to clear large-scale cardiac swine samples with minimal tissue deformation and protein loss. Combined with light sheet auto-fluorescent and scattering microscopy, Pocket CLARITY enabled the characterization of myocardial microstructural helicity of cardiac tissue from control, heart failure, and myocardial infarction in swine. Pocket CLARITY revealed with high fidelity that transmural microstructural helicity of the heart is significantly depressed in cardiovascular disease (CVD), thereby revealing new insights at the tissue level associated with impaired cardiac function.

3.
Commun Biol ; 5(1): 656, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787681

ABSTRACT

Both exercise-induced molecular mechanisms and physiological cardiac remodeling have been previously studied on a whole heart level. However, the regional microstructural tissue effects of these molecular mechanisms in the heart have yet to be spatially linked and further elucidated. We show in exercised mice that the expression of CITED4, a transcriptional co-regulator necessary for cardioprotection, is regionally heterogenous in the heart with preferential significant increases in the lateral wall compared with sedentary mice. Concordantly in this same region, the heart's local microstructural tissue helicity is also selectively increased in exercised mice. Quantification of CITED4 expression and microstructural tissue helicity reveals a significant correlation across both sedentary and exercise mouse cohorts. Furthermore, genetic deletion of CITED4 in the heart prohibits regional exercise-induced microstructural helicity remodeling. Taken together, CITED4 expression is necessary for exercise-induced regional remodeling of the heart's microstructural helicity revealing how a key molecular regulator of cardiac remodeling manifests into downstream local tissue-level changes.


Subject(s)
Heart , Transcription Factors/metabolism , Ventricular Remodeling , Animals , Gene Deletion , Mice
5.
Front Cardiovasc Med ; 9: 831080, 2022.
Article in English | MEDLINE | ID: mdl-35479280

ABSTRACT

Purpose: To evaluate if a fully-automatic deep learning method for myocardial strain analysis based on magnetic resonance imaging (MRI) cine images can detect asymptomatic dysfunction in young adults with cardiac risk factors. Methods: An automated workflow termed DeepStrain was implemented using two U-Net models for segmentation and motion tracking. DeepStrain was trained and tested using short-axis cine-MRI images from healthy subjects and patients with cardiac disease. Subsequently, subjects aged 18-45 years were prospectively recruited and classified among age- and gender-matched groups: risk factor group (RFG) 1 including overweight without hypertension or type 2 diabetes; RFG2 including hypertension without type 2 diabetes, regardless of overweight; RFG3 including type 2 diabetes, regardless of overweight or hypertension. Subjects underwent cardiac short-axis cine-MRI image acquisition. Differences in DeepStrain-based left ventricular global circumferential and radial strain and strain rate among groups were evaluated. Results: The cohort consisted of 119 participants: 30 controls, 39 in RFG1, 30 in RFG2, and 20 in RFG3. Despite comparable (>0.05) left-ventricular mass, volumes, and ejection fraction, all groups (RFG1, RFG2, RFG3) showed signs of asymptomatic left ventricular diastolic and systolic dysfunction, evidenced by lower circumferential early-diastolic strain rate (<0.05, <0.001, <0.01), and lower septal circumferential end-systolic strain (<0.001, <0.05, <0.001) compared with controls. Multivariate linear regression showed that body surface area correlated negatively with all strain measures (<0.01), and mean arterial pressure correlated negatively with early-diastolic strain rate (<0.01). Conclusion: DeepStrain fully-automatically provided evidence of asymptomatic left ventricular diastolic and systolic dysfunction in asymptomatic young adults with overweight, hypertension, and type 2 diabetes risk factors.

6.
Front Cardiovasc Med ; 9: 840790, 2022.
Article in English | MEDLINE | ID: mdl-35274012

ABSTRACT

Background: Young adult populations with the sedentary lifestyle-related risk factors overweight, hypertension, and type 2 diabetes (T2D) are growing, and associated cardiac alterations could overlap early findings in non-ischemic cardiomyopathy on cardiovascular MRI. We aimed to investigate cardiac morphology, function, and tissue characteristics for these cardiovascular risk factors. Methods: Non-athletic non-smoking asymptomatic adults aged 18-45 years were prospectively recruited and underwent 3Tesla cardiac MRI. Multivariate linear regression was performed to investigate independent associations of risk factor-related parameters with cardiac MRI values. Results: We included 311 adults (age, 32 ± 7 years; men, 49%). Of them, 220 subjects had one or multiple risk factors, while 91 subjects were free of risk factors. For overweight, increased body mass index (per SD = 5.3 kg/m2) was associated with increased left ventricular (LV) mass (+7.3 g), biventricular higher end-diastolic (LV, +8.6 ml), and stroke volumes (SV; +5.0 ml), higher native T1 (+7.3 ms), and lower extracellular volume (ECV, -0.38%), whereas the higher waist-hip ratio was associated with lower biventricular volumes. Regarding hypertension, increased systolic blood pressure (per SD = 14 mmHg) was associated with increased LV mass (+6.9 g), higher LV ejection fraction (EF; +1.0%), and lower ECV (-0.48%), whereas increased diastolic blood pressure was associated with lower LV EF. In T2D, increased HbA1c (per SD = 9.0 mmol/mol) was associated with increased LV mass (+2.2 g), higher right ventricular end-diastolic volume (+3.2 ml), and higher ECV (+0.27%). Increased heart rate was linked with decreased LV mass, lower biventricular volumes, and lower T2 values. Conclusions: Young asymptomatic adults with overweight, hypertension, and T2D show subclinical alterations in cardiac morphology, function, and tissue characteristics. These alterations should be considered in cardiac MRI-based clinical decision making.

7.
Magn Reson Med ; 87(1): 474-487, 2022 01.
Article in English | MEDLINE | ID: mdl-34390021

ABSTRACT

PURPOSE: For in vivo cardiac DTI, breathing motion and B0 field inhomogeneities produce misalignment and geometric distortion in diffusion-weighted (DW) images acquired with conventional single-shot EPI. We propose using a dimensionality reduction method to retrospectively estimate the respiratory phase of DW images and facilitate both distortion correction (DisCo) and motion compensation. METHODS: Free-breathing electrocardiogram-triggered whole left-ventricular cardiac DTI using a second-order motion-compensated spin echo EPI sequence and alternating directionality of phase encoding blips was performed on 11 healthy volunteers. The respiratory phase of each DW image was estimated after projecting the DW images into a 2D space with Laplacian eigenmaps. DisCo and motion compensation were applied to the respiratory sorted DW images. The results were compared against conventional breath-held T2 half-Fourier single shot turbo spin echo. Cardiac DTI parameters including fractional anisotropy, mean diffusivity, and helix angle transmurality were compared with and without DisCo. RESULTS: The left-ventricular geometries after DisCo and motion compensation resulted in significantly improved alignment of DW images with T2 reference. DisCo reduced the distance between the left-ventricular contours by 13.2% ± 19.2%, P < .05 (2.0 ± 0.4 for DisCo and 2.4 ± 0.5 mm for uncorrected). DisCo DTI parameter maps yielded no significant differences (mean diffusivity: 1.55 ± 0.13 × 10-3 mm2 /s and 1.53 ± 0.13 × 10-3 mm2 /s, P = .09; fractional anisotropy: 0.375 ± 0.041 and 0.379 ± 0.045, P = .11; helix angle transmurality: 1.00% ± 0.10°/% and 0.99% ± 0.12°/%, P = .44), although the orientation of individual tensors differed. CONCLUSION: Retrospective respiratory phase estimation with LE-based DisCo and motion compensation in free-breathing cardiac DTI resulting in significantly reduced geometric distortion and improved alignment within and across slices.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Echo-Planar Imaging , Humans , Motion , Reproducibility of Results , Retrospective Studies
8.
Front Cardiovasc Med ; 8: 730316, 2021.
Article in English | MEDLINE | ID: mdl-34540923

ABSTRACT

Myocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI) data provides a more thorough characterization of cardiac mechanics than volumetric parameters such as left-ventricular ejection fraction, but sources of variation including segmentation and motion estimation have limited its wider clinical use. We designed and validated a fast, fully-automatic deep learning (DL) workflow to generate both volumetric parameters and strain measures from cine-MRI data consisting of segmentation and motion estimation convolutional neural networks. The final motion network design, loss function, and associated hyperparameters are the result of a thorough ad hoc implementation that we carefully planned specific for strain quantification, tested, and compared to other potential alternatives. The optimal configuration was trained using healthy and cardiovascular disease (CVD) subjects (n = 150). DL-based volumetric parameters were correlated (>0.98) and without significant bias relative to parameters derived from manual segmentations in 50 healthy and CVD test subjects. Compared to landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark deformation using DL-based motion estimates from paired cine-MRI data resulted in an end-point-error of 2.9 ± 1.5 mm. Measures of end-systolic global strain from these cine-MRI data showed no significant biases relative to a tagging-MRI reference method. On 10 healthy subjects, intraclass correlation coefficient for intra-scanner repeatability was good to excellent (>0.75) for all global measures and most polar map segments. In conclusion, we developed and evaluated the first end-to-end learning-based workflow for automated strain analysis from cine-MRI data to quantitatively characterize cardiac mechanics of healthy and CVD subjects.

9.
Front Physiol ; 12: 694940, 2021.
Article in English | MEDLINE | ID: mdl-34434115

ABSTRACT

Cardiomyocyte growth can occur in both physiological (exercised-induced) and pathological (e.g., volume overload and pressure overload) conditions leading to left ventricular (LV) hypertrophy. Studies using animal models and histology have demonstrated the growth and remodeling process at the organ level and tissue-cellular level, respectively. However, the driving factors of growth and the mechanistic link between organ, tissue, and cellular growth remains poorly understood. Computational models have the potential to bridge this gap by using constitutive models that describe the growth and remodeling process of the myocardium coupled with finite element (FE) analysis to model the biomechanics of the heart at the organ level. Using subject-specific imaging data of the LV geometry at two different time points, an FE model can be created with the inverse method to characterize the growth parameters of each subject. In this study, we developed a framework that takes in vivo cardiac magnetic resonance (CMR) imaging data of exercised porcine model and uses FE and Bayesian optimization to characterize myocardium growth in the transverse and longitudinal directions. The efficacy of this framework was demonstrated by successfully predicting growth parameters of 18 synthetic LV targeted masks which were generated from three LV porcine geometries. The framework was further used to characterize growth parameters in 4 swine subjects that had been exercised. The study suggested that exercise-induced growth in swine is prone to longitudinal cardiomyocyte growth (58.0 ± 19.6% after 6 weeks and 79.3 ± 15.6% after 12 weeks) compared to transverse growth (4.0 ± 8.0% after 6 weeks and 7.8 ± 9.4% after 12 weeks). This framework can be used to characterize myocardial growth in different phenotypes of LV hypertrophy and can be incorporated with other growth constitutive models to study different hypothetical growth mechanisms.

10.
Magn Reson Med ; 86(2): 866-880, 2021 08.
Article in English | MEDLINE | ID: mdl-33764563

ABSTRACT

PURPOSE: Brain imaging exams typically take 10-20 min and involve multiple sequential acquisitions. A low-distortion whole-brain echo planar imaging (EPI)-based approach was developed to efficiently encode multiple contrasts in one acquisition, allowing for calculation of quantitative parameter maps and synthetic contrast-weighted images. METHODS: Inversion prepared spin- and gradient-echo EPI was developed with slice-order shuffling across measurements for efficient acquisition with T1 , T2 , and T2∗ weighting. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which in turn were used to create synthetic weighted images with typical clinical contrasts. Dynamic slice-optimized multi-coil shimming with a B0 shim array was used to reduce B0 inhomogeneity and, therefore, image distortion by >50%. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A low-rank reconstruction approach was used to mitigate errors from shot-to-shot phase variation. RESULTS: The slice-optimized shimming approach was combined with in-plane parallel-imaging acceleration of 4× to enable single-shot EPI with more than eight-fold distortion reduction. The proposed sequence efficiently obtained 40 contrasts across the whole-brain in just over 1 min at 1.2 × 1.2 × 3 mm resolution. The multi-shot variant of the sequence achieved higher in-plane resolution of 1 × 1 × 4 mm with good image quality in 4 min. Derived quantitative maps showed comparable values to conventional mapping methods. CONCLUSION: The approach allows fast whole-brain imaging with quantitative parameter maps and synthetic weighted contrasts. The slice-optimized multi-coil shimming and multi-shot reconstruction approaches result in minimal EPI distortion, giving the sequence the potential to be used in rapid screening applications.


Subject(s)
Echo-Planar Imaging , Image Processing, Computer-Assisted , Acceleration , Brain/diagnostic imaging
11.
Sci Rep ; 10(1): 3562, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32081903

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Radiology ; 294(3): 538-545, 2020 03.
Article in English | MEDLINE | ID: mdl-31961241

ABSTRACT

Background Myocardial oxygenation imaging could help determine the presence of microvascular dysfunction associated with increased cardiovascular risk. However, it is challenging to depict the potentially small oxygenation alterations with current noninvasive cardiac MRI blood oxygen level-dependent (BOLD) techniques. Purpose To demonstrate the cardiac application of a gradient-echo spin-echo (GESE) echo-planar imaging sequence for dynamic and quantitative heartbeat-to-heartbeat BOLD MRI and evaluate the sequence in populations both healthy and with hypertension in combination with a breath hold-induced CO2 intervention. Materials and Methods GESE echo-planar imaging sequence was performed in 18 healthy participants and in eight prospectively recruited participants with hypertension on a 3.0-T MRI system. T2 and T2* maps were calculated per heartbeat with a four-parameter fitting technique. Septal regions of interests were used to determine T2 and T2* values per heartbeat and examined over the course of a breath hold to determine BOLD changes. T2 and T2* changes of healthy participants and participants with hypertension were compared by using a nonparametric Mann-Whitney test. Results GESE echo-planar imaging approach gave spatially stable T2 and T2* maps per heartbeat for healthy participants and participants with hypertension, with mean T2 values of 43 msec ± 5 (standard deviation) and 46 msec ± 9, respectively, and mean T2* values of 28 msec ± 5 and 22 msec ± 5, respectively. The healthy participants exhibited increasing T2 and T2* values over the course of a breath hold with a mean positive slope of 0.2 msec per heartbeat ± 0.1 for T2 and 0.2 msec per heartbeat ± 0.1 for T2*, whereas for participants with hypertension these dynamic T2 and T2* values had a mean negative slope of -0.2 msec per heartbeat ± 0.2 for T2 and -0.1 msec per heartbeat ± 0.2 for T2*. The difference in these mean slopes between healthy participants and participants with hypertension was significant for both T2 (P < .001) and T2* (P < .001). Conclusion Gradient-echo spin-echo echo-planar imaging sequence provided quantitative T2 and T2* maps per heartbeat and enabled dynamic heartbeat-to-heartbeat blood oxygen level-dependent (BOLD)-response imaging by analyzing changes in T2 and T2* over the time of a breath-hold intervention. This approach could identify differences in the BOLD response between healthy participants and participants with hypertension. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Friedrich in this issue.


Subject(s)
Echo-Planar Imaging/methods , Heart/diagnostic imaging , Oxygen/blood , Adult , Female , Humans , Male , Middle Aged
13.
Sci Rep ; 9(1): 19366, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852978

ABSTRACT

Regenerative therapies based on injectable biomaterials, hold an unparalleled potential for treating myocardial ischemia. Yet, noninvasive evaluation of their efficacy has been lagging behind. Here, we report the development and longitudinal application of multiparametric cardiac magnetic resonance imaging (MRI) to evaluate a hydrogel-based cardiac regenerative therapy. A pH-switchable hydrogel was loaded with slow releasing insulin growth factor 1 and vascular endothelial growth factor, followed by intramyocardial injection in a mouse model of ischemia reperfusion injury. Longitudinal cardiac MRI assessed three hallmarks of cardiac regeneration: angiogenesis, resolution of fibrosis and (re)muscularization after infarction. The multiparametric approach contained dynamic contrast enhanced MRI that measured improved vessel features by assessing fractional blood volume and permeability*surface area product, T1-mapping that displayed reduced fibrosis, and tagging MRI that showed improved regional myocardial strain in hydrogel treated infarcts. Finally, standard volumetric MRI demonstrated improved left ventricular functioning in hydrogel treated mice followed over time. Histology confirmed MR-based vessel features and fibrotic measurements. Our novel triple-marker strategy enabled detection of ameliorated regeneration in hydrogel treated hearts highlighting the translational potential of these longitudinal MRI approaches.


Subject(s)
Heart/diagnostic imaging , Hydrogels/pharmacology , Myocardial Ischemia/diagnostic imaging , Neovascularization, Physiologic/drug effects , Animals , Biocompatible Materials/pharmacology , Disease Models, Animal , Heart/drug effects , Humans , Hydrogen-Ion Concentration , Insulin-Like Growth Factor I/pharmacology , Mice , Myocardial Ischemia/drug therapy , Myocardial Ischemia/pathology , Myocardium/metabolism , Myocardium/pathology , Neovascularization, Physiologic/genetics , Regenerative Medicine , Vascular Endothelial Growth Factor A/pharmacology
14.
J Magn Reson Imaging ; 47(4): 891-912, 2018 04.
Article in English | MEDLINE | ID: mdl-29131444

ABSTRACT

BACKGROUND: Although cardiac MR and T1 mapping are increasingly used to diagnose diffuse fibrosis based cardiac diseases, studies reporting T1 values in healthy and diseased myocardium, particular in nonischemic cardiomyopathies (NICM) and populations with increased cardiovascular risk, seem contradictory. PURPOSE: To determine the range of native myocardial T1 value ranges in patients with NICM and populations with increased cardiovascular risk. STUDY TYPE: Systemic review and meta-analysis. POPULATION: Patients with NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), and patients with myocarditis (MC), iron overload, amyloidosis, Fabry disease, and populations with hypertension (HT), diabetes mellitus (DM), and obesity. FIELD STRENGTH/SEQUENCE: (Shortened) modified Look-Locker inversion-recovery MR sequence at 1.5 or 3T. ASSESSMENT: PubMed and Embase were searched following the PRISMA guidelines. STATISTICAL TESTS: The summary of standard mean difference (SMD) between the diseased and a healthy control populations was generated using a random-effects model in combination with meta-regression analysis. RESULTS: The SMD for HCM, DCM, and MC patients were significantly increased (1.41, 1.48, and 1.96, respectively, P < 0.01) compared with healthy controls. The SMD for HT patients with and without left-ventricle hypertrophy (LVH) together was significantly increased (0.19, P = 0.04), while for HT patients without LVH the SMD was zero (0.03, P = 0.52). The number of studies on amyloidosis, iron overload, Fabry disease, and HT patients with LVH did not meet the requirement to perform a meta-analysis. However, most studies reported a significantly increased T1 for amyloidosis and HT patients with LVH and a significant decreased T1 for iron overload and Fabry disease patients. DATA CONCLUSIONS: Native T1 mapping by using an (Sh)MOLLI sequence can potentially assess myocardial changes in HCM, DCM, MC, iron overload, amyloidosis, and Fabry disease compared to controls. In addition, it can help to diagnose left-ventricular remodeling in HT patients. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:891-912.


Subject(s)
Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Cardiomyopathies/pathology , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/pathology , Heart/diagnostic imaging , Humans , Myocardium/pathology , Reference Values , Risk Factors
15.
Arterioscler Thromb Vasc Biol ; 38(1): 186-194, 2018 01.
Article in English | MEDLINE | ID: mdl-29146749

ABSTRACT

OBJECTIVE: The endothelium has a crucial role in wound healing, acting as a barrier to control transit of leukocytes. Endothelial barrier function is impaired in atherosclerosis preceding myocardial infarction (MI). Besides lowering lipids, statins modulate endothelial function. Here, we noninvasively tested whether statins affect permeability at the inflammatory (day 3) and the reparative (day 7) phase of infarct healing post-MI using contrast-enhanced cardiac magnetic resonance imaging (MRI). APPROACH AND RESULTS: Noninvasive permeability mapping by MRI after MI in C57BL/6, atherosclerotic ApoE-/-, and statin-treated ApoE-/- mice was correlated to subsequent left ventricular outcome by structural and functional cardiac MRI. Ex vivo histology, flow cytometry, and quantitative polymerase chain reaction were performed on infarct regions. Increased vascular permeability at ApoE-/- infarcts was observed compared with C57BL/6 infarcts, predicting enhanced left ventricular dilation at day 21 post-MI by MRI volumetry. Statin treatment improved vascular barrier function at ApoE-/- infarcts, indicated by reduced permeability. The infarcted tissue of ApoE-/- mice 3 days post-MI displayed an unbalanced Vegfa(vascular endothelial growth factor A)/Angpt1 (angiopoetin-1) expression ratio (explaining leakage-prone vessels), associated with higher amounts of CD45+ leukocytes and inflammatory LY6Chi monocytes. Statins reversed the unbalanced Vegfa/Angpt1 expression, normalizing endothelial barrier function at the infarct and blocking the augmented recruitment of inflammatory leukocytes in statin-treated ApoE-/- mice. CONCLUSIONS: Statins lowered permeability and reduced the transit of unfavorable inflammatory leukocytes into the infarcted tissue, consequently improving left ventricular outcome.


Subject(s)
Capillary Permeability/drug effects , Contrast Media/administration & dosage , Coronary Vessels/drug effects , Coronary Vessels/diagnostic imaging , Endothelium, Vascular/drug effects , Endothelium, Vascular/diagnostic imaging , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Magnetic Resonance Imaging , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/drug therapy , Wound Healing/drug effects , Angiopoietin-1/metabolism , Animals , Chemotaxis, Leukocyte/drug effects , Coronary Vessels/metabolism , Coronary Vessels/pathology , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Inflammation Mediators/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout, ApoE , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Predictive Value of Tests , Time Factors , Vascular Endothelial Growth Factor A/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...