Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(1): 125-133, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38118176

ABSTRACT

Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, ß-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a ß-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-ß-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-ß-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.


Subject(s)
Enzyme Inhibitors , Glucuronidase , Piperidines , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Glucuronidase/metabolism , Glycoside Hydrolases/metabolism
2.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37724332

ABSTRACT

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Subject(s)
Gangliosidosis, GM1 , Leukodystrophy, Globoid Cell , Lysosomal Storage Diseases , Mucopolysaccharidosis IV , Humans , beta-Galactosidase/metabolism , Galactosylceramidase
3.
Chemistry ; 27(66): 16377-16388, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34570911

ABSTRACT

Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in ß-glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA-targeting activity-based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism-based mode of action and uncover binding of the new N-functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6-fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6- and N-functionalised reagents, a bi-functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.


Subject(s)
Fluorescent Dyes , Glucosylceramidase , Catalytic Domain , Glucosylceramidase/metabolism
4.
European J Org Chem ; 2019(6): 1397-1404, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-31787842

ABSTRACT

Cyclophellitol aziridine and its configurational and functional isomers are powerful covalent inhibitors of retaining glycosidases, and find application in fundamental studies on glycosidases, amongst others in relation to inherited lysosomal storage disorders caused by glycosidase malfunctioning. Few direct and stereoselective aziridination methodologies are known for the synthesis of cyclophellitol aziridines. Herein, we present our studies on the scope of direct 3-amino-2-(trifluoromethyl)quinazolin-4(3H)-one-mediated aziridination on a variety of configurational and functional cyclohexenol isosters. We demonstrate that the aziridination can be directed by an allylic or homoallylic hydroxyl through H-bonding and that steric hindrance plays a key role in the diastereoselectivity of the reaction.

5.
Bioorg Med Chem ; 27(5): 692-699, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30661740

ABSTRACT

Acute myeloid leukemia (AML) is characterized by fast progression and low survival rates, in which Fms-like tyrosine kinase 3 (FLT3) receptor mutations have been identified as a driver mutation in cancer progression in a subgroup of AML patients. Clinical trials have shown emergence of drug resistant mutants, emphasizing the ongoing need for new chemical matter to enable the treatment of this disease. Here, we present the discovery and topological structure-activity relationship (SAR) study of analogs of isoquinolinesulfonamide H-89, a well-known PKA inhibitor, as FLT3 inhibitors. Surprisingly, we found that the SAR was not consistent with the observed binding mode of H-89 in PKA. Matched molecular pair analysis resulted in the identification of highly active sub-nanomolar azaindoles as novel FLT3-inhibitors. Structure based modelling using the FLT3 crystal structure suggested an alternative, flipped binding orientation of the new inhibitors.


Subject(s)
Aza Compounds/chemistry , Indoles/chemistry , Protein Kinase Inhibitors/chemistry , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Aza Compounds/chemical synthesis , Aza Compounds/metabolism , Binding Sites , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/chemistry , fms-Like Tyrosine Kinase 3/metabolism
6.
J Am Chem Soc ; 139(40): 14192-14197, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28937220

ABSTRACT

Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining ß-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.


Subject(s)
Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Fluorescence Polarization/methods , Imino Sugars/pharmacology , beta-Glucosidase/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Glucosylceramidase , Humans , Imino Sugars/chemistry , beta-Glucosidase/metabolism
7.
Medchemcomm ; 8(5): 982-988, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108813

ABSTRACT

Inhibitors of diacylglycerol lipases and α,ß-hydrolase domain containing protein 6 (ABHD6) are potential leads for the development of therapeutic agents for metabolic and neurodegenerative disorders. Here, we report the enantioselective synthesis and structure activity relationships of triazole ureas featuring chiral, hydroxylated 2-benzylpiperidines as dual inhibitors of DAGLα and ABHD6. The chirality of the carbon bearing the C2 substituent, as well as the position of the hydroxyl (tolerated at C5, but not at C3) has profound influence on the inhibitory activity of both DAGLα and ABHD6, as established using biochemical assays and competitive activity-based protein profiling on mouse brain extracts.

8.
J Med Chem ; 60(1): 428-440, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27992221

ABSTRACT

Triazole ureas constitute a versatile class of irreversible inhibitors that target serine hydrolases in both cells and animal models. We have previously reported that triazole ureas can act as selective and CNS-active inhibitors for diacylglycerol lipases (DAGLs), enzymes responsible for the biosynthesis of 2-arachidonoylglycerol (2-AG) that activates cannabinoid CB1 receptor. Here, we report the enantio- and diastereoselective synthesis and structure-activity relationship studies. We found that 2,4-substituted triazole ureas with a biphenylmethanol group provided the most optimal scaffold. Introduction of a chiral ether substituent on the 5-position of the piperidine ring provided ultrapotent inhibitor 38 (DH376) with picomolar activity. Compound 38 temporarily reduces fasting-induced refeeding of mice, thereby emulating the effect of cannabinoid CB1-receptor inverse agonists. This was mirrored by 39 (DO34) but also by the negative control compound 40 (DO53) (which does not inhibit DAGL), which indicates the triazole ureas may affect the energy balance in mice through multiple molecular targets.


Subject(s)
Eating , Enzyme Inhibitors/pharmacology , Fasting , Lipoprotein Lipase/antagonists & inhibitors , Triazoles/chemistry , Urea/chemistry , Animals , HEK293 Cells , Humans , Mice , Structure-Activity Relationship
9.
Bioorg Med Chem ; 24(23): 6139-6148, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27838168

ABSTRACT

Detection of cerebral ß-amyloid (Aß) by targeted contrast agents is of great interest for in vivo diagnosis of Alzheimer's disease (AD). Partly because of their planar structure several bis-styrylbenzenes have been previously reported as potential Aß imaging agents. However, these compounds are relatively hydrophobic, which likely limits their in vivo potential. Based on their structures, we hypothesized that less hydrophobic bis-pyridylethenylbenzenes may also label amyloid. We synthesized several bis-pyridylethenylbenzenes and tested whether these compounds indeed display improved solubility and lower LogP values, and studied their fluorescent properties and Aß binding characteristics. Bis-pyridylethenylbenzenes showed a clear affinity for Aß plaques on both human and murine AD brain sections. Competitive binding experiments suggested a different binding site than Chrysamine G, a well-known stain for amyloid. With a LogP value between 3 and 5, most bis-pyridylethenylbenzenes were able to enter the brain and label murine amyloid in vivo with the bis(4-pyridylethenyl)benzenes showing the most favorable characteristics. In conclusion, the presented results suggest that bis-pyridylethenylbenzene may serve as a novel backbone for amyloid imaging agents.


Subject(s)
Amyloid beta-Peptides/chemistry , Contrast Media/chemistry , Fluorescent Dyes/chemistry , Plaque, Amyloid/diagnostic imaging , Pyridines/chemistry , Styrenes/chemistry , Animals , Brain/diagnostic imaging , Brain/pathology , Contrast Media/chemical synthesis , Fluorescent Dyes/chemical synthesis , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice, Transgenic , Microscopy, Fluorescence , Molecular Imaging , Protein Binding , Pyridines/chemical synthesis , Solubility , Stilbenes/chemistry , Styrenes/chemical synthesis
10.
Mol Biosyst ; 12(6): 1809-17, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27138522

ABSTRACT

The profiling of kinases using established proteomics techniques is hampered by their non-covalent mode-of-action. One way to overcome this caveat is the use of probes featuring photo-labelling groups that can be activated by UV irradiation to generate a reactive species that will establish a covalent bond to the enzyme. In this study we have used the well-known kinase inhibitor H89 as a lead for the development of probes for the affinity-based profiling of clinically relevant kinases. A labelling protocol was established for recombinant kinases and more complex protein mixtures using gel-based techniques. We also show that the probes act in a competitive manner with other kinase inhibitors.


Subject(s)
Isoquinolines/chemistry , Molecular Probes/chemistry , Phosphotransferases/chemistry , Sulfonamides/chemistry , Ultraviolet Rays , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation , Fluorescence Resonance Energy Transfer , Kinetics , Molecular Structure , Phosphotransferases/metabolism , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Staining and Labeling
11.
Chem Commun (Camb) ; 52(21): 4064-7, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26894389

ABSTRACT

The incorporation of adamantylalanine and carboranylalanine at the P2 site of bortezomib is well tolerated and provided potent cell permeable proteasome inhibitors with increased off-rates compared to bortezomib. Adamantylalanine and carboranylalanine were synthesized enantioselectively by an asymmetric Strecker reaction on Ellmans tert-butyl sulfinimines.


Subject(s)
Adamantane/chemical synthesis , Boron Compounds/chemical synthesis , Bortezomib/chemistry , Bortezomib/pharmacology , Phenylalanine/analogs & derivatives , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Adamantane/chemistry , Boron Compounds/chemistry , Cell Line, Tumor , Humans , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Proteasome Endopeptidase Complex/metabolism , Stereoisomerism , Sulfonium Compounds/chemistry
12.
Proc Natl Acad Sci U S A ; 113(1): 26-33, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26668358

ABSTRACT

Diacylglycerol lipases (DAGLα and DAGLß) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.


Subject(s)
Arachidonic Acids/metabolism , Brain/drug effects , Diglycerides/metabolism , Endocannabinoids/metabolism , Enzyme Inhibitors/pharmacology , Glycerides/metabolism , Lipoprotein Lipase/antagonists & inhibitors , Neuronal Plasticity/drug effects , Animals , Brain/enzymology , Brain/metabolism , Enzyme Inhibitors/chemistry , Lipoprotein Lipase/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Cannabinoid/metabolism , Signal Transduction/drug effects
13.
J Org Chem ; 80(14): 7258-65, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26061009

ABSTRACT

In this paper, a new synthetic route toward 6-hydroxysphingosine and α-hydroxy ceramide is described. The synthesis employs a cross-metathesis to unite a sphingosine head allylic alcohol with a long-chain fatty acid alkene that also bears an allylic alcohol group. To allow for a productive CM coupling, the sphingosine head allylic alcohol was protected with a cyclic carbonate moiety and a reactive CM catalyst system, consisting of Grubbs II catalyst and CuI, was employed.


Subject(s)
Ceramides/chemistry , Propanols/chemistry , Sphingosine/analogs & derivatives , Alkenes/chemical synthesis , Catalysis , Molecular Structure , Sphingosine/chemical synthesis , Sphingosine/chemistry , Stereoisomerism
14.
Chem Sci ; 6(5): 2782-false, 2015 May 01.
Article in English | MEDLINE | ID: mdl-29142681

ABSTRACT

GH29 α-l-fucosidases catalyze the hydrolysis of α-l-fucosidic linkages. Deficiency in human lysosomal α-l-fucosidase (FUCA1) leads to the recessively inherited disorder, fucosidosis. Herein we describe the development of fucopyranose-configured cyclophellitol aziridines as activity-based probes (ABPs) for selective in vitro and in vivo labeling of GH29 α-l-fucosidases from bacteria, mice and man. Crystallographic analysis on bacterial α-l-fucosidase confirms that the ABPs act by covalent modification of the active site nucleophile. Competitive activity-based protein profiling identified l-fuconojirimycin as the single GH29 α-l-fucosidase inhibitor from eight configurational isomers.

15.
J Med Chem ; 57(21): 9096-104, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25250725

ABSTRACT

This work details the evaluation of a number of N-alkylated deoxynojirimycin derivatives on their merits as dual glucosylceramide synthase/neutral glucosylceramidase inhibitors. Building on our previous work, we synthesized a series of D-gluco and L-ido-configured iminosugars N-modified with a variety of hydrophobic functional groups. We found that iminosugars featuring N-pentyloxymethylaryl substituents are considerably more potent inhibitors of glucosylceramide synthase than their aliphatic counterparts. In a next optimization round, we explored a series of biphenyl-substituted iminosugars of both configurations (D-gluco and L-ido) with the aim to introduce structural features known to confer metabolic stability to drug-like molecules. From these series, two sets of molecules emerge as lead series for further profiling. Biphenyl-substituted L-ido-configured deoxynojirimycin derivatives are selective for glucosylceramidase and the nonlysosomal glucosylceramidase, and we consider these as leads for the treatment of neuropathological lysosomal storage disorders. Their D-gluco-counterparts are also potent inhibitors of intestinal glycosidases, and because of this characteristic, we regard these as the prime candidates for type 2 diabetes therapeutics.


Subject(s)
Biphenyl Compounds/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Glucosylceramidase/antagonists & inhibitors , Glucosyltransferases/antagonists & inhibitors , Imino Sugars/chemical synthesis , 1-Deoxynojirimycin/analogs & derivatives , Biphenyl Compounds/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Imino Sugars/pharmacology , beta-Glucosidase/antagonists & inhibitors
16.
Nat Chem Biol ; 6(12): 907-13, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21079602

ABSTRACT

Deficiency of glucocerebrosidase (GBA) underlies Gaucher disease, a common lysosomal storage disorder. Carriership for Gaucher disease has recently been identified as major risk for parkinsonism. Presently, no method exists to visualize active GBA molecules in situ. We here report the design, synthesis and application of two fluorescent activity-based probes allowing highly specific labeling of active GBA molecules in vitro and in cultured cells and mice in vivo. Detection of in vitro labeled recombinant GBA on slab gels after electrophoresis is in the low attomolar range. Using cell or tissue lysates, we obtained exclusive labeling of GBA molecules. We present evidence from fluorescence-activated cell sorting analysis, fluorescence microscopy and pulse-chase experiments of highly efficient labeling of GBA molecules in intact cells as well as tissues of mice. In addition, we illustrate the use of the fluorescent probes to study inhibitors and tentative chaperones in living cells.


Subject(s)
Glucosylceramidase/chemistry , Animals , Boron Compounds/chemistry , Cells, Cultured , Cyclohexanols/chemistry , Drug Design , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Fibroblasts/chemistry , Fibroblasts/metabolism , Flow Cytometry , Fluorescent Dyes/chemistry , Gaucher Disease/metabolism , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/metabolism , Imino Pyranoses/pharmacology , Mice , Microscopy, Fluorescence , Molecular Chaperones/metabolism
17.
Org Lett ; 12(17): 3957-9, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20690611

ABSTRACT

The chemoenzymatic synthesis of three 1-deoxynojirimycin-type iminosugars is reported. Key steps in the synthetic scheme include a Dibal reduction-transimination-sodium borohydride reduction cascade of reactions on an enantiomerically pure cyanohydrin, itself prepared employing almond hydroxynitrile lyase (paHNL) as the common precursor. Ensuing ring-closing metathesis and Upjohn dihydroxylation afford the target compounds.


Subject(s)
1-Deoxynojirimycin/chemical synthesis , Nitriles/chemistry , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/chemistry , Aldehyde-Lyases/metabolism , Cyclization , Molecular Structure , Prunus/enzymology , Stereoisomerism
18.
J Med Chem ; 53(5): 2319-23, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20131905

ABSTRACT

Proteasomal processing is conducted by three individual catalytic subunits, namely beta1, beta2, and beta5. Subunit-specific inhibitors are useful tools in dissecting the role of these individual subunits and are leads toward the development of antitumor agents. We here report that the presence of fluorinated phenylalanine derivatives in peptide based proteasome inhibitors has a profound effect on inhibitor potency and selectivity. Specifically, compound 4a emerges as one of the most beta5 specific inhibitors known to date.


Subject(s)
Catalytic Domain/drug effects , Chymotrypsin/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Phenylalanine/analogs & derivatives , Proteasome Endopeptidase Complex/metabolism , Chymotrypsin/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Inhibitory Concentration 50 , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/pharmacology , Proteasome Inhibitors , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 17(12): 3402-5, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17442566

ABSTRACT

The ubiquitin-proteasome pathway degrades the majority of proteins in mammalian cells and plays an essential role in the generation of antigenic peptides presented by major histocompatibility class I molecules. Proteasome inhibitors are of great interest as research tools and drug candidates. Most work on proteasome inhibitors has focused on the inhibition of the chymotryptic-like (beta5) sites; little attention has been paid to the inhibition of two other types of active sites, the trypsin-like (beta2) and the caspase-like (beta1). We report here the development of the first cell-permeable and highly selective inhibitors (4 and 5) of the proteasome's caspase-like site. The selectivity of the compounds is directly and unambiguously established by Staudinger-Bertozzi labeling of proteasome subunits covalently modified with azide-functionalized inhibitor 5. This labeling reveals that the caspase-like site of the immunoproteasome (beta1i) is a preferred target of this compound. These compounds can be used as tools to study roles of beta1 and beta1i sites in generation of specific antigenic peptides and their potential role as co-targets of anti-cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Caspases/metabolism , Cell Membrane Permeability/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Proteasome Inhibitors , Antineoplastic Agents/chemical synthesis , Azides/chemistry , Binding Sites , Caspases/chemistry , Cell Membrane Permeability/physiology , Cysteine Proteinase Inhibitors/chemical synthesis , Humans , Models, Chemical , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/immunology
20.
Org Biomol Chem ; 5(9): 1416-26, 2007 May 07.
Article in English | MEDLINE | ID: mdl-17464411

ABSTRACT

The synthesis and evaluation of hybrid proteasome inhibitors that contain structural elements of the known inhibitors bortezomib, epoxomicin and peptide vinyl sulfones is described. From the panel of 15 inhibitors some structure activity relationships can be deduced with regard to inhibitory activity in relation to peptide recognition element, inhibitor size and nature of the electrophilic trap. Further, the panel contains one of the most potent peptide-based pan-proteasome inhibitors reported to date.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Peptides/chemistry , Peptides/pharmacology , Proteasome Inhibitors , Cell Line , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Proteasome Endopeptidase Complex/metabolism , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...