Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sci Adv ; 9(22): eadf4409, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37256941

ABSTRACT

DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.


Subject(s)
DNA Damage , DNA Repair , Animals , Mice , DNA Replication , Homologous Recombination , DNA
2.
Nat Commun ; 14(1): 1958, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029129

ABSTRACT

The high frequency of homologous recombination deficiency (HRD) is the main rationale of testing platinum-based chemotherapy in triple-negative breast cancer (TNBC), however, the existing methods to identify HRD are controversial and there is a medical need for predictive biomarkers. We assess the in vivo response to platinum agents in 55 patient-derived xenografts (PDX) of TNBC to identify determinants of response. The HRD status, determined from whole genome sequencing, is highly predictive of platinum response. BRCA1 promoter methylation is not associated with response, in part due to residual BRCA1 gene expression and homologous recombination proficiency in different tumours showing mono-allelic methylation. Finally, in 2 cisplatin sensitive tumours we identify mutations in XRCC3 and ORC1 genes that are functionally validated in vitro. In conclusion, our results demonstrate that the genomic HRD is predictive of platinum response in a large cohort of TNBC PDX and identify alterations in XRCC3 and ORC1 genes driving cisplatin response.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Cisplatin/pharmacology , Cisplatin/therapeutic use , Platinum/therapeutic use , BRCA1 Protein/genetics , Homologous Recombination , Mutation , Whole Genome Sequencing , BRCA2 Protein/genetics
3.
Nat Commun ; 14(1): 183, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635273

ABSTRACT

Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Dipeptidyl Peptidase 4/genetics , Fibroblasts , Cancer-Associated Fibroblasts/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myofibroblasts/pathology , Tumor Microenvironment , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor
4.
Nat Commun ; 13(1): 6579, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323660

ABSTRACT

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Interferons , Lymphocytes, Tumor-Infiltrating , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/genetics , Proto-Oncogene Proteins c-myc/metabolism
6.
Nature ; 608(7923): 609-617, 2022 08.
Article in English | MEDLINE | ID: mdl-35948633

ABSTRACT

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Subject(s)
Exons , Gene Deletion , Molecular Targeted Therapy , Neoplasms , Oncogenes , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Animals , Exons/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism
7.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34548335

ABSTRACT

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Subject(s)
BRCA1 Protein/physiology , Fanconi Anemia Complementation Group N Protein/physiology , Gene Expression Regulation, Neoplastic , Homologous Recombination , Mammary Neoplasms, Animal/pathology , Recombinational DNA Repair , Animals , Apoptosis , BRCA2 Protein/physiology , Cell Proliferation , Female , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Knockout , Tumor Cells, Cultured , Tumor Suppressor Protein p53/physiology
8.
Cancer Res ; 80(7): 1486-1497, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32060147

ABSTRACT

Invasive lobular carcinoma (ILC) accounts for 8%-14% of all breast cancer cases. The main hallmark of ILCs is the functional loss of the cell-cell adhesion protein E-cadherin. Nonetheless, loss of E-cadherin alone does not predispose mice to mammary tumor development, indicating that additional perturbations are required for ILC formation. Previously, we identified an N-terminal truncation variant of ASPP2 (t-ASPP2) as a driver of ILC in mice with mammary-specific loss of E-cadherin. Here we showed that expression of t-ASPP2 induced actomyosin relaxation, enabling adhesion and survival of E-cadherin-deficient murine mammary epithelial cells on stiff matrices like fibrillar collagen. The induction of actomyosin relaxation by t-ASPP2 was dependent on its interaction with protein phosphatase 1, but not on t-ASPP2-induced YAP activation. Truncated ASPP2 collaborated with both E-cadherin loss and PI3K pathway activation via PTEN loss in ILC development. t-ASPP2-induced actomyosin relaxation was required for ILC initiation, but not progression. Conversely, YAP activation induced by t-ASPP2 contributed to tumor growth and progression while being dispensable for tumor initiation. Together, these findings highlight two distinct mechanisms through which t-ASPP2 promotes ILC initiation and progression. SIGNIFICANCE: Truncated ASPP2 cooperates with E-cadherin and PTEN loss to drive breast cancer initiation and progression via two distinct mechanisms. ASPP2-induced actomyosin relaxation drives tumor initiation, while ASPP2-mediated YAP activation enhances tumor progression.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Carcinoma, Lobular/pathology , Cell Cycle Proteins/metabolism , Mammary Neoplasms, Experimental/pathology , Tumor Suppressor Proteins/genetics , Actomyosin/metabolism , Animals , Cadherins/genetics , Carcinogenesis/pathology , Carcinoma, Lobular/chemically induced , Carcinoma, Lobular/genetics , Cell Adhesion/genetics , Cells, Cultured , DNA Transposable Elements/genetics , Disease Progression , Epithelial Cells , Female , Imidazoles/toxicity , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Transgenic , Mutation , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Oxadiazoles/toxicity , Primary Cell Culture , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
9.
EMBO J ; 39(5): e102169, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31930530

ABSTRACT

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Subject(s)
Breast Neoplasms/genetics , CRISPR-Cas Systems , Gene Editing , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Mutation
10.
Genes Dev ; 34(3-4): 179-193, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31879358

ABSTRACT

The GATA-type zinc finger transcription factor TRPS1 has been implicated in breast cancer. However, its precise role remains unclear, as both amplifications and inactivating mutations in TRPS1 have been reported. Here, we used in vitro and in vivo loss-of-function approaches to dissect the role of TRPS1 in mammary gland development and invasive lobular breast carcinoma, which is hallmarked by functional loss of E-cadherin. We show that TRPS1 is essential in mammary epithelial cells, since TRPS1-mediated suppression of interferon signaling promotes in vitro proliferation and lactogenic differentiation. Similarly, TRPS1 expression is indispensable for proliferation of mammary organoids and in vivo survival of luminal epithelial cells during mammary gland development. However, the consequences of TRPS1 loss are dependent on E-cadherin status, as combined inactivation of E-cadherin and TRPS1 causes persistent proliferation of mammary organoids and accelerated mammary tumor formation in mice. Together, our results demonstrate that TRPS1 can function as a context-dependent tumor suppressor in breast cancer, while being essential for growth and differentiation of normal mammary epithelial cells.


Subject(s)
Breast Neoplasms/physiopathology , Carcinogenesis/genetics , Cell Differentiation/genetics , Epithelial Cells/cytology , Repressor Proteins/metabolism , Animals , Breast Neoplasms/genetics , Cadherins/genetics , Cell Survival/genetics , Chromatin/genetics , Chromatin/metabolism , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Human/growth & development , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Protein Binding/genetics , Repressor Proteins/genetics , Signal Transduction/genetics
11.
Nat Commun ; 10(1): 3800, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444332

ABSTRACT

E-cadherin (CDH1) is a master regulator of epithelial cell adherence junctions and a well-established tumor suppressor in Invasive Lobular Carcinoma (ILC). Intriguingly, somatic inactivation of E-cadherin alone in mouse mammary epithelial cells (MMECs) is insufficient to induce tumor formation. Here we show that E-cadherin loss induces extrusion of luminal MMECs to the basal lamina. Remarkably, E-cadherin-deficient MMECs can breach the basal lamina but do not disseminate into the surrounding fat pad. Basal lamina components laminin and collagen IV supported adhesion and survival of E-cadherin-deficient MMECs while collagen I, the principle component of the mammary stromal micro-environment did not. We uncovered that relaxation of actomyosin contractility mediates adhesion and survival of E-cadherin-deficient MMECs on collagen I, thereby allowing ILC development. Together, these findings unmask the direct consequences of E-cadherin inactivation in the mammary gland and identify aberrant actomyosin contractility as a critical barrier to ILC formation.


Subject(s)
Actomyosin/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Carcinoma, Lobular/pathology , Mammary Neoplasms, Experimental/pathology , Animals , Breast Neoplasms/genetics , Cadherins/genetics , Carcinoma, Lobular/genetics , Cell Adhesion/genetics , Cell Survival/genetics , Cells, Cultured , Epithelial Cells , Female , Mammary Glands, Animal/cytology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Transgenic , Primary Cell Culture
12.
Nat Commun ; 10(1): 397, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674894

ABSTRACT

BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinogenesis/genetics , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic/genetics , Mutation , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Embryonic Stem Cells , Female , Gene Regulatory Networks , HEK293 Cells , Humans , Mammary Neoplasms, Animal/genetics , Mice , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcriptome , Tumor Suppressor Protein p53/genetics
13.
J Pathol ; 246(1): 41-53, 2018 09.
Article in English | MEDLINE | ID: mdl-29877575

ABSTRACT

Hereditary breast cancers in BRCA1 mutation carriers are mostly estrogen receptor α (ERα)-negative and progesterone receptor (PR)-negative; however, hormone depletion via bilateral oophorectomy does result in a marked reduction in breast cancer risk, suggesting that BRCA1-associated breast tumorigenesis is dependent on hormone signaling. We used geneticaly engineered mouse models to determine the individual influences of ERα and PR signaling on the development of BRCA1-deficient breast cancer. In line with the human data, BRCA1-deficient mouse mammary tumors are ERα-negative, and bilateral ovariectomy leads to abrogation of mammary tumor development. Hormonal replacement experiments in ovariectomized mice showed that BRCA1-deficient mammary tumor formation is promoted by estrogen but not by progesterone. In line with these data, mammary tumorigenesis was significantly delayed by the selective ERα downregulator fulvestrant, but not by the selective PR antagonist Org33628. Together, our results illustrate that BRCA1-associated tumorigenesis is dependent on estrogen signaling rather than on progesterone signaling, and call into question the utility of PR antagonists as a tumor prevention strategy for BRCA1 mutation carriers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma in Situ/chemically induced , Cell Transformation, Neoplastic/chemically induced , Estradiol/toxicity , Estrogen Replacement Therapy/adverse effects , Mammary Neoplasms, Experimental/chemically induced , Progesterone/toxicity , Signal Transduction/drug effects , Tumor Suppressor Proteins/genetics , Animals , BRCA1 Protein , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Drug Implants , Estradiol/administration & dosage , Estrenes/pharmacology , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/drug effects , Estrogen Receptor beta/metabolism , Female , Fulvestrant/pharmacology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, 129 Strain , Mice, Transgenic , Ovariectomy , Progesterone/administration & dosage , Receptors, Progesterone/drug effects , Receptors, Progesterone/metabolism , Time Factors , Tumor Burden/drug effects , Tumor Suppressor Proteins/deficiency
14.
Nat Genet ; 49(8): 1219-1230, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28650484

ABSTRACT

Invasive lobular carcinoma (ILC) is the second most common breast cancer subtype and accounts for 8-14% of all cases. Although the majority of human ILCs are characterized by the functional loss of E-cadherin (encoded by CDH1), inactivation of Cdh1 does not predispose mice to develop mammary tumors, implying that mutations in additional genes are required for ILC formation in mice. To identify these genes, we performed an insertional mutagenesis screen using the Sleeping Beauty transposon system in mice with mammary-specific inactivation of Cdh1. These mice developed multiple independent mammary tumors of which the majority resembled human ILC in terms of morphology and gene expression. Recurrent and mutually exclusive transposon insertions were identified in Myh9, Ppp1r12a, Ppp1r12b and Trp53bp2, whose products have been implicated in the regulation of the actin cytoskeleton. Notably, MYH9, PPP1R12B and TP53BP2 were also frequently aberrated in human ILC, highlighting these genes as drivers of a novel oncogenic pathway underlying ILC development.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Lobular/genetics , Mutagenesis, Insertional , Animals , Cadherins/genetics , Cell Line , Cell Survival/genetics , Cell Transformation, Neoplastic/genetics , Female , Haplotypes , Humans , Male , Mice , Myosin Heavy Chains , Myosin-Light-Chain Phosphatase/genetics , Nonmuscle Myosin Type IIA/genetics , Transposases/genetics , Tumor Suppressor Proteins/genetics
15.
J Pathol ; 241(4): 511-521, 2017 03.
Article in English | MEDLINE | ID: mdl-27943283

ABSTRACT

Women with heterozygous germline mutations in the BRCA1 tumour suppressor gene are strongly predisposed to developing early-onset breast cancer through loss of the remaining wild-type BRCA1 allele and inactivation of TP53. Although tumour prevention strategies in BRCA1-mutation carriers are still limited to prophylactic surgery, several therapeutic strategies have been developed to target the DNA repair defects (also known as 'BRCAness') of BRCA1-deficient tumours. In particular, DNA-damaging agents such as platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors show strong activity against BRCA1-mutated tumours. However, it is unclear whether drugs that target BRCAness can also be used to prevent tumour formation in BRCA1-mutation carriers, especially as loss of wild-type BRCA1 may not be the first event in BRCA1-associated tumourigenesis. We performed prophylactic treatments in a genetically engineered mouse model in which de novo development of BRCA1-deficient mammary tumours is induced by stochastic loss of BRCA1 and p53. We found that prophylactic window therapy with nimustine, cisplatin or olaparib reduced the amount and size of mammary gland lesions, and significantly increased the median tumour latency. Similar results were obtained with intermittent prophylactic treatment with olaparib. Importantly, prophylactic window therapy with nimustine and cisplatin resulted in an increased fraction of BRCA1-proficient mammary tumours, suggesting selective survival and malignant transformation of BRCA1-proficient lesions upon prophylactic treatment with DNA-damaging agents. Prophylactic therapy with olaparib significantly prolonged mammary tumour-free survival without any significant increase in the fraction of BRCA1-proficient tumours, warranting the evaluation of this PARP inhibitor in prophylactic trials in BRCA1-mutation carriers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Agents/pharmacology , Mammary Neoplasms, Animal/drug therapy , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Tumor Suppressor Proteins/genetics , Animals , Antineoplastic Agents/therapeutic use , BRCA1 Protein , Cisplatin/pharmacology , DNA Repair , Disease Models, Animal , Female , Germ-Line Mutation , Humans , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/prevention & control , Mice , Nimustine/pharmacology , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Tumor Suppressor Proteins/metabolism
16.
Cell Rep ; 16(8): 2087-2101, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27524621

ABSTRACT

Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC.


Subject(s)
Cadherins/genetics , Carcinoma, Lobular/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Mammary Neoplasms, Experimental/genetics , PTEN Phosphohydrolase/genetics , Phosphoinositide-3 Kinase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Cadherins/deficiency , Carcinoma, Lobular/drug therapy , Carcinoma, Lobular/mortality , Carcinoma, Lobular/pathology , Cell Line, Tumor , Cell Survival , Female , Gene Expression Profiling , Imidazoles/pharmacology , Integrases/genetics , Integrases/metabolism , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/mortality , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Neoplasm Invasiveness , PTEN Phosphohydrolase/deficiency , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Quinolines/pharmacology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Signal Transduction , Survival Analysis , Tumor Microenvironment
17.
J Clin Invest ; 126(8): 2903-18, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27454287

ABSTRACT

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Gene Deletion , Mammary Neoplasms, Animal/genetics , Alleles , Animals , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Crosses, Genetic , DNA Damage , Drug Screening Assays, Antitumor , Female , Founder Effect , Frameshift Mutation , Genetic Engineering , Humans , Male , Mammary Neoplasms, Animal/drug therapy , Mice , Mutation , Neoplasm Transplantation , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombination, Genetic
18.
J Natl Cancer Inst ; 108(11)2016 11.
Article in English | MEDLINE | ID: mdl-27381626

ABSTRACT

BACKGROUND: Although BRCA1-deficient tumors are extremely sensitive to DNA-damaging drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, recurrences do occur and, consequently, resistance to therapy remains a serious clinical problem. To study the underlying mechanisms, we induced therapy resistance in patient-derived xenograft (PDX) models of BRCA1-mutated and BRCA1-methylated triple-negative breast cancer. METHODS: A cohort of 75 mice carrying BRCA1-deficient breast PDX tumors was treated with cisplatin, melphalan, nimustine, or olaparib, and treatment sensitivity was determined. In tumors that acquired therapy resistance, BRCA1 expression was investigated using quantitative real-time polymerase chain reaction and immunoblotting. Next-generation sequencing, methylation-specific multiplex ligation-dependent probe amplification (MLPA) and Target Locus Amplification (TLA)-based sequencing were used to determine mechanisms of BRCA1 re-expression in therapy-resistant tumors. RESULTS: BRCA1 protein was not detected in therapy-sensitive tumors but was found in 31 out of 42 resistant cases. Apart from previously described mechanisms involving BRCA1-intragenic deletions and loss of BRCA1 promoter hypermethylation, a novel resistance mechanism was identified in four out of seven BRCA1-methylated PDX tumors that re-expressed BRCA1 but retained BRCA1 promoter hypermethylation. In these tumors, we found de novo gene fusions that placed BRCA1 under the transcriptional control of a heterologous promoter, resulting in re-expression of BRCA1 and acquisition of therapy resistance. CONCLUSIONS: In addition to previously described clinically relevant resistance mechanisms in BRCA1-deficient tumors, we describe a novel resistance mechanism in BRCA1-methylated PDX tumors involving de novo rearrangements at the BRCA1 locus, demonstrating that BRCA1-methylated breast cancers may acquire therapy resistance via both epigenetic and genetic mechanisms.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Fusion , Genes, BRCA1 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Animals , BRCA1 Protein/deficiency , Cisplatin/therapeutic use , DNA Methylation , Female , Gene Expression , Humans , Melphalan/therapeutic use , Mice , Mutation , Neoplasm Transplantation , Nimustine/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Promoter Regions, Genetic
19.
Int J Cancer ; 136(6): 1434-44, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25080865

ABSTRACT

The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP-activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non-small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials.


Subject(s)
AMP-Activated Protein Kinases/physiology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/congenital , Lung Neoplasms/drug therapy , Metformin/pharmacology , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Signal Transduction , Animals , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Kinase/physiology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Synergism , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mutation , Niacinamide/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Sorafenib , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , ras Proteins/genetics
20.
Cancer Res ; 72(9): 2350-61, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22396490

ABSTRACT

The lack of markers to predict chemotherapy responses in patients poses a major handicap in cancer treatment. We searched for gene expression patterns that correlate with docetaxel or cisplatin response in a mouse model for breast cancer associated with BRCA1 deficiency. Array-based expression profiling did not identify a single marker gene predicting docetaxel response, despite an increase in Abcb1 (P-glycoprotein) expression that was sufficient to explain resistance in several poor responders. Intertumoral heterogeneity explained the inability to identify a predictive gene expression signature for docetaxel. To address this problem, we used a novel algorithm designed to detect differential gene expression in a subgroup of the poor responders that could identify tumors with increased Abcb1 transcript levels. In contrast, standard analytical tools, such as significance analysis of microarrays, detected a marker only if it correlated with response in a substantial fraction of tumors. For example, low expression of the Xist gene correlated with cisplatin hypersensitivity in most tumors, and it also predicted long recurrence-free survival of HER2-negative, stage III breast cancer patients treated with intensive platinum-based chemotherapy. Our findings may prove useful for selecting patients with high-risk breast cancer who could benefit from platinum-based therapy.


Subject(s)
Antineoplastic Agents/pharmacology , BRCA1 Protein/deficiency , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , BRCA1 Protein/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cisplatin/pharmacology , Docetaxel , Female , Gene Expression Profiling , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Randomized Controlled Trials as Topic , Taxoids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL