Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 243
Filter
1.
Alzheimers Res Ther ; 16(1): 113, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769578

ABSTRACT

BACKGROUND: The gut-derived metabolite Trimethylamine N-oxide (TMAO) and its precursors - betaine, carnitine, choline, and deoxycarnitine - have been associated with an increased risk of cardiovascular disease, but their relation to cognition, neuroimaging markers, and dementia remains uncertain. METHODS: In the population-based Rotterdam Study, we used multivariable regression models to study the associations between plasma TMAO, its precursors, and cognition in 3,143 participants. Subsequently, we examined their link to structural brain MRI markers in 2,047 participants, with a partial validation in the Leiden Longevity Study (n = 318). Among 2,517 participants, we assessed the risk of incident dementia using multivariable Cox proportional hazard models. Following this, we stratified the longitudinal associations by medication use and sex, after which we conducted a sensitivity analysis for individuals with impaired renal function. RESULTS: Overall, plasma TMAO was not associated with cognition, neuroimaging markers or incident dementia. Instead, higher plasma choline was significantly associated with poor cognition (adjusted mean difference: -0.170 [95% confidence interval (CI) -0.297;-0.043]), brain atrophy and more markers of cerebral small vessel disease, such as white matter hyperintensity volume (0.237 [95% CI: 0.076;0.397]). By contrast, higher carnitine concurred with lower white matter hyperintensity volume (-0.177 [95% CI: -0.343;-0.010]). Only among individuals with impaired renal function, TMAO appeared to increase risk of dementia (hazard ratio (HR): 1.73 [95% CI: 1.16;2.60]). No notable differences were observed in stratified analyses. CONCLUSIONS: Plasma choline, as opposed to TMAO, was found to be associated with cognitive decline, brain atrophy, and markers of cerebral small vessel disease. These findings illustrate the complexity of relationships between TMAO and its precursors, and emphasize the need for concurrent study to elucidate gut-brain mechanisms.


Subject(s)
Cognition , Dementia , Magnetic Resonance Imaging , Methylamines , Neuroimaging , Humans , Methylamines/blood , Male , Female , Dementia/blood , Dementia/diagnostic imaging , Dementia/epidemiology , Aged , Middle Aged , Cognition/physiology , Brain/diagnostic imaging , Choline/blood , Biomarkers/blood , Prospective Studies
2.
Brain Commun ; 6(1): fcae048, 2024.
Article in English | MEDLINE | ID: mdl-38419735

ABSTRACT

Although past research has established a relationship between functional connectivity and cognitive function, less is known about which cognitive domains are associated with which specific functional networks. This study investigated associations between functional connectivity and global cognitive function and performance in the domains of memory, executive function and psychomotor speed in 166 older adults aged 75-91 years (mean = 80.3 ± 3.8) with minor cognitive deficits (Mini-Mental State Examination scores between 21 and 27). Functional connectivity was assessed within 10 standard large-scale resting-state networks and on a finer spatial resolution between 300 nodes in a functional connectivity matrix. No domain-specific associations with mean functional connectivity within large-scale resting-state networks were found. Node-level analysis revealed that associations between functional connectivity and cognitive performance differed across cognitive functions in strength, location and direction. Specific subnetworks of functional connections were found for each cognitive domain in which higher connectivity between some nodes but lower connectivity between other nodes were related to better cognitive performance. Our findings add to a growing body of literature showing differential sensitivity of functional connections to specific cognitive functions and may be a valuable resource for hypothesis generation of future studies aiming to investigate specific cognitive dysfunction with resting-state functional connectivity in people with beginning cognitive deficits.

3.
J Cereb Blood Flow Metab ; : 271678X231214102, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37994030

ABSTRACT

Cerebral amyloid angiopathy (CAA) is frequently found post mortem in Alzheimer's dementia, but often undetected during life especially since in vivo hallmarks of CAA and its vascular damage become overt relatively late in the disease process. Decreased neurovascular coupling to visual stimulation has been put forward as an early MRI marker for CAA disease severity. The current study investigates the role of neurovascular coupling in AD related dementia and its early stages. We included 25 subjective cognitive impairment, 33 mild cognitive impairment and 17 dementia patients and 44 controls. All participants underwent magnetic resonance imaging of the brain and neuropsychological assessment. Univariate general linear modeling analyses were used to assess neurovascular coupling between patient groups and controls. Moreover, linear regression analyses was used to assess the associations between neurovascular coupling and cognition. Our data show that BOLD amplitude is lower in dementia (mean 0.8 ± 0.2, p = 0.001) and MCI patients (mean 0.9 ± 0.3, p = 0.004) compared with controls (mean 1.1 ± 0.2). A low BOLD amplitude was associated with low scores in multiple cognitive domains. We conclude that cerebrovascular dysfunction, most likely due CAA, is an important comorbidity in early stages of dementia and has an independent effect on cognition.

4.
Nat Genet ; 55(10): 1651-1664, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37770635

ABSTRACT

Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Atherosclerosis/genetics , Black People/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Risk Factors , European People/genetics
5.
Br J Clin Pharmacol ; 89(12): 3606-3617, 2023 12.
Article in English | MEDLINE | ID: mdl-37488930

ABSTRACT

AIMS: Dysfunction of nitric oxide-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate signalling is implicated in the pathophysiology of cognitive impairment. Zagociguat is a central nervous system (CNS) penetrant sGC stimulator designed to amplify nitric oxide-cyclic guanosine monophosphate signalling in the CNS. This article describes a phase 1b study evaluating the safety and pharmacodynamic effects of zagociguat. METHODS: In this randomized crossover study, 24 healthy participants aged ≥65 years were planned to receive 15 mg zagociguat or placebo once daily for 2 15-day periods separated by a 27-day washout. Adverse events, vital signs, electrocardiograms and laboratory tests were conducted to assess safety. Pharmacokinetics of zagociguat were evaluated in blood and cerebrospinal fluid (CSF). Pharmacodynamic assessments included evaluation of cerebral blood flow, CNS tests, pharmaco-electroencephalography, passive leg movement and biomarkers in blood, CSF and brain. RESULTS: Twenty-four participants were enrolled; 12 participants completed both treatment periods, while the other 12 participants completed only 1 treatment period. Zagociguat was well-tolerated and penetrated the blood-brain barrier, with a CSF/free plasma concentration ratio of 0.45 (standard deviation 0.092) measured 5 h after the last dose of zagociguat on Day 15. Zagociguat induced modest decreases in blood pressure. No consistent effects of zagociguat on other pharmacodynamic parameters were detected. CONCLUSION: Zagociguat was well-tolerated and induced modest blood pressure reductions consistent with other sGC stimulators. No clear pharmacodynamic effects of zagociguat were detected. Studies in participants with proven reduced cerebral blood flow or CNS function may be an avenue for further evaluation of the compound.


Subject(s)
Guanosine Monophosphate , Nitric Oxide , Aged , Humans , Soluble Guanylyl Cyclase/metabolism , Cross-Over Studies , Signal Transduction , Vasodilator Agents
6.
Brain Commun ; 5(3): fcad126, 2023.
Article in English | MEDLINE | ID: mdl-37168731

ABSTRACT

Ageing is associated with functional reorganization that is mainly characterized by declining functional connectivity due to general neurodegeneration and increasing incidence of disease. Functional connectivity has been studied across the lifespan; however, there is a paucity of research within the older groups (≥75 years) where neurodegeneration and disease prevalence are at its highest. In this cross-sectional study, we investigated associations between age and functional connectivity and the influence of cerebral small vessel disease (CSVD)-a common age-related morbidity-in 167 community-dwelling older adults aged 75-91 years (mean = 80.3 ± 3.8). Resting-state functional MRI was used to determine functional connectivity within ten standard networks and calculate the whole-brain graph theoretical measures global efficiency and clustering coefficient. CSVD features included white matter hyperintensities, lacunar infarcts, cerebral microbleeds, and atrophy that were assessed in each individual and a composite score was calculated. Both main and interaction effects (age*CSVD features) on functional connectivity were studied. We found stable levels of functional connectivity across the age range. CSVD was not associated with functional connectivity measures. To conclude, our data show that the functional architecture of the brain is relatively unchanged after 75 years of age and not differentially affected by individual levels of vascular pathology.

7.
NMR Biomed ; 36(7): e4916, 2023 07.
Article in English | MEDLINE | ID: mdl-36908068

ABSTRACT

Cerebral vascular reactivity quantified using blood oxygen level-dependent functional MRI in conjuncture with a visual stimulus has been proven to be a potent and early marker for cerebral amyloid angiopathy. This work investigates the influence of different postprocessing methods on the outcome of such vascular reactivity measurements. Three methods for defining the region of interest (ROI) over which the reactivity is measured are investigated: structural (transformed V1), functional (template based on the activation of a subset of subjects), and percentile (11.5 cm3 most responding voxels). Evaluation is performed both in a test-retest experiment in healthy volunteers (N = 12), as well as in 27 Dutch-type cerebral amyloid angiopathy patients and 33 age- and sex-matched control subjects. The results show that the three methods select a different subset of voxels, although all three lead to similar outcome measures in healthy subjects. However, in (severe) pathology, the percentile method leads to higher reactivity measures than the other two, due to circular analysis or "double dipping" by defining a subject-specific ROI based on the strongest responses within each subject. Furthermore, while different voxels are included in the presence of lesions, this does not necessarily result in different outcome measures. In conclusion, to avoid bias created by the method, either a structural or a functional method is recommended. Both of these methods provide similar reactivity measures, although the functional ROI appears to be less reproducible between studies, because slightly different subsets of voxels were found to be included. On the other hand, the functional method did include fewer lesion voxels than the structural method.


Subject(s)
Cardiovascular System , Cerebral Amyloid Angiopathy , Humans , Photic Stimulation , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Magnetic Resonance Imaging/methods , Cardiovascular System/pathology
8.
J Magn Reson Imaging ; 57(3): 909-915, 2023 03.
Article in English | MEDLINE | ID: mdl-35876045

ABSTRACT

BACKGROUND: Decreased cerebrovascular reactivity, measured as changes in blood-oxygen-level-dependent (BOLD) signal, is a potential new cerebral amyloid angiopathy (CAA) severity marker. Before clinical application, the effect of aging on BOLD parameters, and reproducibility and test-retest reliability of these parameters should be assessed. PURPOSE: Assess the effect of healthy aging on cerebrovascular reactivity (BOLD amplitude, time to peak, and time to baseline). And determine reproducibility and test-retest reliability of these parameters. STUDY TYPE: Prospective-observational. POPULATION: Eighty-six healthy adults (mean age 56 years, 55% female), 10 presymptomatic D-CAA mutation carriers (mean age 34 years, 70% female), and 10 symptomatic D-CAA mutation carriers (mean age 54 years, 70% female). FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional (3D) T1-weighted MRI and gradient echo BOLD fMRI. ASSESSMENT: To assess test-retest reliability of BOLD parameters, i.e. BOLD amplitude, time to peak, and time to baseline, BOLD fMRI scans were repeated three times immediately after each other, in both controls and mutation carriers. To assess reproducibility, BOLD fMRI scans were repeated with a 3-week interval for each subject. STATISTICAL TESTS: Linear regression analyses and two-way mixed absolute agreement intra-class correlation approach. RESULTS: Healthy aging was associated with decreased BOLD amplitude (ß = -0.711) and prolonged time to baseline (ß = 0.236) in the visual cortex after visual stimulation Reproducibility of BOLD amplitude was excellent (ICC 0.940) in the subgroup of healthy adults. Test-retest reliability for BOLD amplitude was excellent in healthy adults (ICC 0.856-0.910) and presymptomatic D-CAA mutation carriers (ICC 0.959-0.981). In symptomatic D-CAA mutation carriers, test-retest reliability was poor for all parameters (ICCs < 0.5). DATA CONCLUSION: Healthy aging is associated with decreased cerebrovascular reactivity, measured by changes in BOLD response to visual stimulation. The BOLD amplitude appears to be a robust measurement in healthy adults and presymptomatic D-CAA mutation carriers, but not in symptomatic D-CAA mutation carriers.


Subject(s)
Cerebral Amyloid Angiopathy , Magnetic Resonance Imaging , Adult , Humans , Female , Middle Aged , Male , Reproducibility of Results , Prospective Studies , Photic Stimulation , Magnetic Resonance Imaging/methods , Cerebral Amyloid Angiopathy/diagnostic imaging
9.
J Alzheimers Dis ; 90(1): 381-388, 2022.
Article in English | MEDLINE | ID: mdl-36120778

ABSTRACT

BACKGROUND: Deep medullary vein (DMV) changes occur in cerebral small vessel diseases (SVD) and in Alzheimer's disease. Cerebral amyloid angiopathy (CAA) is a common SVD that has a high co-morbidity with Alzheimer's disease. So far, DMVs have not been evaluated in CAA. OBJECTIVE: To evaluate DMVs in Dutch-type hereditary CAA (D-CAA) mutation carriers and controls, in relation to MRI markers associated with D-CAA. METHODS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density were quantified on 7 Tesla 3D susceptibility weighted MRI in pre-symptomatic D-CAA mutation carriers (n = 8), symptomatic D-CAA mutation carriers (n = 8), and controls (n = 25). Hemorrhagic MRI markers (cerebral microbleeds, intracerebral hemorrhages, cortical superficial siderosis, convexity subarachnoid hemorrhage), non-hemorrhagic MRI markers (white matter hyperintensities, enlarged perivascular spaces, lacunar infarcts, cortical microinfarcts), cortical grey matter perfusion, and diffusion tensor imaging parameters were assessed in D-CAA mutation carriers. Univariate general linear analysis was used to determine associations between DMV parameters and MRI markers. RESULTS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density did not differ between pre-symptomatic D-CAA mutation carriers, symptomatic D-CAA mutation carriers, and controls. No associations were found between DMV parameters and MRI markers associated with D-CAA. CONCLUSION: This study indicates that vascular amyloid-ß deposition does not affect DMV parameters. In patients with CAA, DMVs do not seem to play a role in the pathogenesis of MRI markers associated with CAA.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy, Familial/diagnostic imaging , Cerebral Amyloid Angiopathy, Familial/genetics , Alzheimer Disease/complications , Diffusion Tensor Imaging , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/complications , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/complications
10.
Stroke ; 53(10): 3133-3144, 2022 10.
Article in English | MEDLINE | ID: mdl-35862191

ABSTRACT

BACKGROUND: A retrospective study has shown that EGFr (epidermal growth factor-like repeat) group in the NOTCH3 gene is an important cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) disease modifier of age at first stroke and white matter hyperintensity (WMH) volume. No study has yet assessed the effect of other known CADASIL modifiers, that is, cardiovascular risk factors and sex, in the context of NOTCH3 EGFr group. In this study, we determined the relative disease-modifying effects of NOTCH3 EGFr group, sex and cardiovascular risk factor on disease severity in the first genotype-driven, large prospective CADASIL cohort study, using a comprehensive battery of CADASIL clinical outcomes and neuroimaging markers. METHODS: Patients with CADASIL participated in a single-center, prospective cohort study (DiViNAS [Disease Variability in NOTCH3 Associated Small Vessel Disease]) between 2017 and 2020. The study protocol included a clinical assessment, neuropsychological test battery and brain magnetic resonance imaging on a single research day. Multivariable linear, logistic and Cox regression models were used to cross-sectionally assess the effect of CADASIL modifiers on clinical severity (stroke, disability, processing speed) and neuroimaging markers (WMH volume, peak width of skeletonized mean diffusivity, lacune volume, brain volume, cerebral microbleed count). RESULTS: Two hundred patients with CADASIL participated, of which 103 harbored a NOTCH3 EGFr 1-6 variant and 97 an EGFr 7-34 variant. NOTCH3 EGFr 1-6 group was the most important modifier of age at first stroke (hazard ratio, 2.45 [95% CI, 1.39-4.31]; P=0.002), lacune volume (odds ratio, 4.31 [95% CI, 2.31-8.04]; P=4.0×10-6), WMH volume (B=0.81 [95% CI, 0.60-1.02]; P=1.1×10-12), and peak width of skeletonized mean diffusivity (B=0.65 [95% CI, 0.44-0.87]; P=1.6×10-8). EGFr 1-6 patients had a significantly higher WMH volume in the anterior temporal lobes and superior frontal gyri and a higher burden of enlarged perivascular spaces. After NOTCH3 EGFr group, male sex and hypertension were the next most important modifiers of clinical outcomes and neuroimaging markers. CONCLUSIONS: NOTCH3 EGFr group is the most important CADASIL disease modifier not only for age at first stroke and WMH volume but also strikingly so for a whole battery of clinically relevant disease measures such as lacune volume and peak width of skeletonized mean diffusivity. NOTCH3 EGFr group is followed in importance by sex, hypertension, diabetes, and smoking.


Subject(s)
CADASIL , Cardiovascular Diseases , Hypertension , Stroke , Brain/pathology , CADASIL/complications , CADASIL/diagnostic imaging , CADASIL/genetics , Cardiovascular Diseases/complications , Cohort Studies , EGF Family of Proteins/genetics , Heart Disease Risk Factors , Humans , Hypertension/complications , Magnetic Resonance Imaging/adverse effects , Male , Mutation , Neuroimaging , Prospective Studies , Receptor, Notch3/genetics , Receptors, Notch/genetics , Retrospective Studies , Risk Factors , Stroke/etiology
11.
Stroke ; 53(6): 2006-2015, 2022 06.
Article in English | MEDLINE | ID: mdl-35360926

ABSTRACT

BACKGROUND: Hemorrhagic and ischemic magnetic resonance imaging lesions as well as the more recently described decrease in vasomotor reactivity have been suggested as possible biomarkers for cerebral amyloid angiopathy (CAA). Analyses of these markers have been primarily cross-sectional during the symptomatic phase of the disease, with little data on their longitudinal progression, particularly in the presymptomatic phase of the disease when it may be most responsive to treatment. We used the unique opportunity provided by studying Dutch-type hereditary cerebral amyloid angiopathy (D-CAA) to determine longitudinal progression of CAA biomarkers during the presymptomatic as well as the symptomatic phase of the disease. METHODS: In this longitudinal case-control study, magnetic resonance imaging markers and cognitive performance were assessed at baseline and after ≈4 years in 10 presymptomatic and 6 symptomatic D-CAA mutation carriers and 20 control subjects. These magnetic resonance imaging markers included hemorrhagic and ischemic manifestations, measurements of cerebral blood flow, and vasomotor reactivity to visual stimulation. RESULTS: In presymptomatic D-CAA mutations carriers, vasomotor reactivity showed a decline over time for blood-oxygen-level-dependent amplitude (P=0.011) and prolongation of time to peak (P<0.001). In contrast, no significant changes in hemorrhagic markers, ischemic markers, cerebral blood flow, and cognition were found. In symptomatic D-CAA mutation carriers, the number of intracerebral hemorrhages increased over the 4-year period (P=0.007). CONCLUSIONS: Our findings indicate that in the presymptomatic phase of D-CAA, cerebrovascular reactivity measured by the blood-oxygen-level-dependent amplitude and time to peak to visual stimulation progressively worsens and can thus be regarded as a disease progression marker. In the symptomatic phase, the most salient marker of progression appears to be recurrent intracerebral hemorrhage.


Subject(s)
Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Biomarkers , Case-Control Studies , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy, Familial/genetics , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/genetics , Cognition , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Oxygen
12.
Clin Transl Sci ; 15(3): 638-648, 2022 03.
Article in English | MEDLINE | ID: mdl-34799987

ABSTRACT

The majority of disease modifying therapies for multiple sclerosis (MS) reduce inflammation, but do no't target remyelination. Development of remyelinating therapies will benefit from a method to quantify myelin kinetics in patients with MS. We labeled myelin in vivo with deuterium, and modeled kinetics of myelin breakdown products ß-galactosylceramide (ß-GalC) and N-Octadecanoyl-sulfatide (NO-Sulf). Five patients with MS received 120 ml 70% D2 O daily for 70 days and were compared with six healthy subjects who previously received the same procedure. Mass spectrometry and compartmental modeling were used to quantify the turnover rate of ß-GalC and NO-Sulf in cerebrospinal fluid (CSF). Turnover rate constants of the fractions of ß-GalC and NO-Sulf with non-negligible turnover were 0.00186 and 0.00714, respectively, in both healthy subjects and patients with MS. The turnover half-life of ß-GalC and NO-Sulf was calculated as 373 days and 96.5 days, respectively. The effect of MS on the NO-Sulf (49.4% lower fraction with non-negligible turnover) was more pronounced compared to the effect on ß-GalC turnover (18.3% lower fraction with non-negligible turnover). Kinetics of myelin breakdown products in the CSF are different in patients with MS compared with healthy subjects. This may be caused by slower myelin production in these patients, by a higher level of degradation of a more stable component of myelin, or, most likely, by a combination of these two processes. Labeling myelin breakdown products is a useful method that can be used to quantify myelin turnover in patients with progressive MS and can therefore be used in proof-of-concept studies with remyelination therapies.


Subject(s)
Multiple Sclerosis , Myelin Sheath , Humans , Kinetics , Multiple Sclerosis/cerebrospinal fluid
13.
J Alzheimers Dis ; 84(3): 1337-1350, 2021.
Article in English | MEDLINE | ID: mdl-34657884

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) show a robust relationship with arterial pressure as well as objective and subjective cognitive functioning. In addition, APOE ɛ4 carriership may influence how arterial pressure affects cognitive functioning. OBJECTIVE: To determine the role of region-specific WMH burden and APOE ɛ4 carriership on the relationship between mean arterial pressure (MAP) and cognitive function as well as subjective cognitive decline (SCD). METHODS: The sample consisted of 87 cognitively unimpaired middle-aged to older adults aged 50-85. We measured WMH volume for the whole brain, anterior thalamic radiation (ATR), forceps minor, and superior longitudinal fasciculus (SLF). We examined whether WMH burden mediated the relationship between MAP and cognition (i.e., TMT-A score for processing speed; Stroop performance for executive function) as well as SCD (i.e., Frequency of Forgetting (FoF)), and whether APOE ɛ4 carriership moderated that mediation. RESULTS: WMH burden within SLF mediated the effect of MAP on Stroop performance. Both whole brain and ATR WMH burden mediated the effect of MAP on FoF score. In the MAP-WMH-Stroop relationship, the mediation effect of SLF WMH and the effect of MAP on SLF WMH were significant only in APOE ɛ4 carriers. In the MAP-WMH-FoF relationship, the effect of MAP on whole brain WMH burden was significant only in ɛ4 carriers. CONCLUSION: WMH burden and APOE genotype explain the link between blood pressure and cognitive function and may enable a more accurate assessment of the effect of high blood pressure on cognitive decline and risk for dementia.


Subject(s)
Apolipoprotein E4/genetics , Arterial Pressure/physiology , Cognition/physiology , Cognitive Dysfunction , White Matter/pathology , Aged , Apolipoproteins E , Brain , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests/statistics & numerical data
14.
Front Neurosci ; 15: 733501, 2021.
Article in English | MEDLINE | ID: mdl-34658772

ABSTRACT

Cortical atrophy is a common manifestation in Parkinson's disease (PD), particularly in advanced stages of the disease. To elucidate the molecular underpinnings of cortical thickness changes in PD, we performed an integrated analysis of brain-wide healthy transcriptomic data from the Allen Human Brain Atlas and patterns of cortical thickness based on T1-weighted anatomical MRI data of 149 PD patients and 369 controls. For this purpose, we used partial least squares regression to identify gene expression patterns correlated with cortical thickness changes. In addition, we identified gene expression patterns underlying the relationship between cortical thickness and clinical domains of PD. Our results show that genes whose expression in the healthy brain is associated with cortical thickness changes in PD are enriched in biological pathways related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, DNA damage responses, and ER-Golgi traffic. The associated pathways were highly related to each other and all belong to cellular maintenance mechanisms. The expression of genes within most pathways was negatively correlated with cortical thickness changes, showing higher expression in regions associated with decreased cortical thickness (atrophy). On the other hand, sumoylation pathways were positively correlated with cortical thickness changes, showing higher expression in regions with increased cortical thickness (hypertrophy). Our findings suggest that alterations in the balanced interplay of these mechanisms play a role in changes of cortical thickness in PD and possibly influence motor and cognitive functions.

15.
Eur J Neurosci ; 54(3): 5189-5202, 2021 08.
Article in English | MEDLINE | ID: mdl-34197660

ABSTRACT

The hypothalamus has been suggested to be important in the initiation cascade of migraine attacks based on clinical and biochemical observations. Previous imaging studies could not disentangle the changes due to the attack and those due to the trigger compound. With a novel approach, we assessed hypothalamic neuronal activity in early premonitory phases of glyceryl-trinitrate (GTN)-induced and spontaneous migraine attacks. We measured the hypothalamic blood oxygen level-dependent (BOLD) response to oral glucose ingestion with 3T-functional magnetic resonance imaging (MRI) in 27 women, 16 with migraine without aura and 11 controls group matched for age and body mass index (BMI), on 1 day without prior GTN administration and on a second day after GTN administration (to coincide with the premonitory phase of an induced attack). Interestingly, subgroups of patients with and without GTN-triggered attacks could be compared. Additionally, five migraineurs were investigated in a spontaneous premonitory phase. Linear mixed models were used to study between- and within-group effects. Without prior GTN infusion, the BOLD response to glucose was similar in migraine participants and controls (P = .41). After prior GTN infusion, recovery occurred steeper and faster in migraineurs (versus Day 1; P < .0001) and in those who developed an attack versus those who did not (P < .0001). Prior GTN infusion did not alter the glucose-induced response in controls (versus baseline; P = .71). Just before spontaneous attacks, the BOLD-response recovery was also faster (P < .0001). In this study, we found new and direct evidence of altered hypothalamic neuronal function in the immediate preclinical phase of both GTN-provoked and spontaneous migraine attacks.


Subject(s)
Migraine Disorders , Nitroglycerin , Cognition , Female , Humans , Hypothalamus , Magnetic Resonance Imaging , Migraine Disorders/chemically induced , Migraine Disorders/diagnostic imaging , Nitroglycerin/toxicity
16.
J Stroke ; 23(2): 223-233, 2021 May.
Article in English | MEDLINE | ID: mdl-34102757

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral amyloid angiopathy (CAA) is a common pathology of the leptomeningeal and cortical small vessels associated with hemorrhagic and non-hemorrhagic brain injury. Given previous evidence for CAA-related loss of cortical thickness and white matter volume, we hypothesized that CAA might also cause tissue loss in the basal ganglia. METHODS: We compared basal ganglia volumes expressed as a percentage of total intracranial volume (pBGV) of non-demented patients with sporadic and hereditary CAA to age-matched healthy control (HC) and Alzheimer's disease (AD) cohorts. RESULTS: Patients with sporadic CAA had lower pBGV (n=80, 1.16%±0.14%) compared to HC (n=80, 1.30%±0.13%, P<0.0001) and AD patients (n=80, 1.23%±0.11%, P=0.001). Similarly, patients with hereditary CAA demonstrated lower pBGV (n=25, 1.26%±0.17%) compared to their matched HC (n=25, 1.36%±0.15%, P=0.036). Using a measurement of normalized basal ganglia width developed for analysis of clinical-grade magnetic resonance images, we found smaller basal ganglia width in patients with CAA-related lobar intracerebral hemorrhage (ICH; n=93, 12.35±1.47) compared to age-matched patients with hypertension-related deep ICH (n=93, 13.46±1.51, P<0.0001) or HC (n=93, 15.45±1.22, P<0.0001). Within the sporadic CAA research cohort, decreased basal ganglia volume was independently correlated with greater cortical gray matter atrophy (r=0.45, P<0.0001), increased basal ganglia fractional anisotropy (r=-0.36, P=0.001), and worse performance on language processing (r=0.35, P=0.003), but not with cognitive tests of executive function or processing speed. CONCLUSIONS: These findings suggest an independent effect of CAA on basal ganglia tissue loss, indicating a novel mechanism for CAA-related brain injury and neurologic dysfunction.

17.
Eur J Neurosci ; 53(11): 3727-3739, 2021 06.
Article in English | MEDLINE | ID: mdl-33792979

ABSTRACT

Structural covariance networks are able to identify functionally organized brain regions by gray matter volume covariance across a population. We examined the transcriptomic signature of such anatomical networks in the healthy brain using postmortem microarray data from the Allen Human Brain Atlas. A previous study revealed that a posterior cingulate network and anterior cingulate network showed decreased gray matter in brains of Parkinson's disease patients. Therefore, we examined these two anatomical networks to understand the underlying molecular processes that may be involved in Parkinson's disease. Whole brain transcriptomics from the healthy brain revealed upregulation of genes associated with serotonin, GPCR, GABA, glutamate, and RAS-signaling pathways. Our results also suggest involvement of the cholinergic circuit, in which genes NPPA, SOSTDC1, and TYRP1 may play a functional role. Finally, both networks were enriched for genes associated with neuropsychiatric disorders that overlap with Parkinson's disease symptoms. The identified genes and pathways contribute to healthy functions of the posterior and anterior cingulate networks and disruptions to these functions may in turn contribute to the pathological and clinical events observed in Parkinson's disease.


Subject(s)
Gray Matter , Parkinson Disease , Adaptor Proteins, Signal Transducing , Brain/diagnostic imaging , Cholinergic Agents , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Parkinson Disease/genetics
18.
Neuroimage Clin ; 29: 102546, 2021.
Article in English | MEDLINE | ID: mdl-33421870

ABSTRACT

Cerebral amyloid angiopathy (CAA) is a major cause of intracerebral hemorrhage and neurological decline in the elderly. CAA results in focal brain lesions, but the influence on global brain functioning needs further investigation. Here we study functional brain connectivity in patients with Dutch type hereditary CAA using resting state functional MRI. Twenty-four DNA-proven Dutch CAA mutation carriers (11 presymptomatic, 13 symptomatic) and 29 age-matched control subjects were included. Using a set of standardized networks covering the entire cortex, we assessed both within- and between-network functional connectivity. We investigated group differences using general linear models corrected for age, sex and gray matter volume. First, all mutation carriers were contrasted against control subjects and subsequently presymptomatic- and symptomatic mutation carriers against control subjects separately, to assess in which stage of the disease differences could be found. All mutation carriers grouped together showed decreased connectivity in the medial and lateral visual networks, default mode network, executive control and bilateral frontoparietal networks. Symptomatic carriers showed diminished connectivity in all but one network, and between the left and right frontoparietal networks. Presymptomatic carriers also showed diminished connectivity, but only in the frontoparietal left network. In conclusion, global brain functioning is diminished in patients with CAA, predominantly in symptomatic CAA and can therefore be considered to be a late consequence of the disease.


Subject(s)
Cerebral Amyloid Angiopathy, Familial , Cerebral Amyloid Angiopathy , Aged , Brain/diagnostic imaging , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/genetics , Gray Matter , Humans , Magnetic Resonance Imaging
19.
Nutr Neurosci ; 24(5): 395-405, 2021 May.
Article in English | MEDLINE | ID: mdl-31288630

ABSTRACT

INTRODUCTION: The brain plays an important regulatory role in directing energy homeostasis and eating behavior. The increased ingestion of sugars and sweeteners over the last decades makes investigating the effects of these substances on the regulatory function of the brain of particular interest. We investigated whole brain functional response to the ingestion of nutrient shakes sweetened with either the nutritive natural sugars glucose and fructose, the low- nutritive natural sugar replacement allulose or the non-nutritive artificial sweetener sucralose. METHODS: Twenty healthy, normal weight, adult males underwent functional MRI on four separate visits. In a double-blind randomized study setup, participants received shakes sweetened with glucose, fructose, allulose or sucralose. Resting state functional MRI was performed before and after ingestion. Changes in Blood Oxygen Level Dependent (BOLD) signal, functional network connectivity and voxel based connectivity by Eigenvector Centrality Mapping (ECM) were measured. RESULTS: Glucose and fructose led to significant decreased BOLD signal in the cingulate cortex, insula and the basal ganglia. Glucose led to a significant increase in eigen vector centrality throughout the brain and a significant decrease in eigen vector centrality in the midbrain. Sucralose and allulose had no effect on BOLD signal or network connectivity but sucralose did lead to a significant increase in eigen vector centrality values in the cingulate cortex, central gyri and temporal lobe. DISCUSSION: Taken together our findings show that even in a shake containing fat and protein, the type of sweetener can affect brain responses and might thus affect reward and satiety responses and feeding behavior. The sweet taste without the corresponding energy content of the non-nutritive sweeteners appeared to have only small effects on the brain. Indicating that the while ingestion of nutritive sugars could have a strong effect on feeding behavior, both in a satiety aspect as well as rewarding aspects, non-nutritive sweeteners appear to not have these effects. TRIAL REGISTRATION: This study is registered at clinicaltrials.gov under number NCT02745730.


Subject(s)
Brain/drug effects , Brain/physiology , Dietary Sugars/administration & dosage , Sweetening Agents/administration & dosage , Adolescent , Adult , Brain Mapping , Double-Blind Method , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/drug effects , Neural Pathways/physiology , Young Adult
20.
Br J Clin Pharmacol ; 87(5): 2290-2302, 2021 05.
Article in English | MEDLINE | ID: mdl-33197078

ABSTRACT

AIMS: Huntington's disease (HD) is a neurodegenerative disease with cognitive, motor and psychiatric symptoms. Toxic accumulation of misfolded mutant huntingtin protein induces mitochondrial dysfunction, leading to a bioenergetic insufficiency in neuronal and muscle cells. We evaluated the safety, pharmacokinetics and pharmacodynamics of SBT-020, a novel compound to improve mitochondrial function, in a 2-part study in early stage HD patients. METHODS: Part 1 consisted of 7-day multiple ascending dose study to select the highest tolerable dose for Part 2, a 28-day multiple dose study. Mitochondrial function was measured in the visual cortex and calf muscle, using phosphorous magnetic resonance spectroscopy, and in circulating peripheral blood mononuclear cells. RESULTS: Treatment-emergent adverse events were mild and more present in the SBT-020 group. Injection site reactions occurred in 91% in Part 1 and 97% in Part 2. Mitochondrial function in calf muscle, peripheral blood mononuclear cells or visual cortex was not changed overall due to treatment with SBT-020. In a posthoc analysis, patients with a higher degree of mitochondrial dysfunction (below the median [∆Ψm < 3412 and τPCr > 42.5 s]) showed more improvement than patients with a relatively lower level of mitochondrial dysfunction. CONCLUSION: SBT-020 was safe at all doses, but no significant differences in any of the pharmacodynamic measurements between the treatment groups and placebo group could be demonstrated. The data suggest that the better than expected mitochondrial function in our patient population at baseline might explain the lack of effect of SBT-020.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Huntington Disease/drug therapy , Leukocytes, Mononuclear , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...