Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 23(11): 8163-8172, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37937191

ABSTRACT

Herein, we study the influences of the laser-exposed volume and the irradiation position on the nonphotochemical laser-induced nucleation (NPLIN) of supersaturated potassium chloride solutions in water. The effect of the exposed volume on the NPLIN probability was studied by exposing distinct milliliter-scale volumes of aqueous potassium chloride solutions stored in vials at two different supersaturations (1.034 and 1.050) and laser intensities (10 and 23 MW/cm2). Higher NPLIN probabilities were observed with increasing laser-exposed volume as well as with increasing supersaturation and laser intensity. The measured NPLIN probabilities at different exposed volumes are questioned in the context of the dielectric polarization mechanism and classical nucleation theory. No significant change in the NPLIN probability was observed when samples were irradiated at the bottom, top, or middle of the vial. However, a significant increase in the nucleation probability was observed upon irradiation through the solution meniscus. We discuss these results in terms of mechanisms proposed for NPLIN.

2.
Cryst Growth Des ; 23(8): 6067-6080, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37547880

ABSTRACT

Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.

3.
Sensors (Basel) ; 23(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37112149

ABSTRACT

There is an ongoing forensic and security need for rapid, on-scene, easy-to-use, non-invasive chemical identification of intact energetic materials at pre-explosion crime scenes. Recent technological advances in instrument miniaturization, wireless transfer and cloud storage of digital data, and multivariate data analysis have created new and very promising options for the use of near-infrared (NIR) spectroscopy in forensic science. This study shows that in addition to drugs of abuse, portable NIR spectroscopy with multivariate data analysis also offers excellent opportunities to identify intact energetic materials and mixtures. NIR is able to characterize a broad range of chemicals of interest in forensic explosive investigations, covering both organic and inorganic compounds. NIR characterization of actual forensic casework samples convincingly shows that this technique can handle the chemical diversity encountered in forensic explosive investigations. The detailed chemical information contained in the 1350-2550 nm NIR reflectance spectrum allows for correct compound identification within a given class of energetic materials, including nitro-aromatics, nitro-amines, nitrate esters, and peroxides. In addition, the detailed characterization of mixtures of energetic materials, such as plastic formulations containing PETN (pentaerythritol tetranitrate) and RDX (trinitro triazinane), is feasible. The results presented illustrate that the NIR spectra of energetic compounds and mixtures are sufficiently selective to prevent false-positive results for a broad range of food-related products, household chemicals, raw materials used for the production of home-made explosives, drugs of abuse, and products that are sometimes used to create hoax improvised explosive devices. However, for frequently encountered pyrotechnic mixtures, such as black powder, flash powder, and smokeless powder, and some basic inorganic raw materials, the application of NIR spectroscopy remains challenging. Another challenge is presented by casework samples of contaminated, aged, and degraded energetic materials or poor-quality HMEs (home-made explosives), for which the spectral signature deviates significantly from the reference spectra, potentially leading to false-negative outcomes.


Subject(s)
Explosive Agents , Spectroscopy, Near-Infrared , Powders , Nitrates , Forensic Sciences
4.
Biomicrofluidics ; 15(6): 064103, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34853626

ABSTRACT

A droplet-based microfluidic platform is presented to study the nucleation kinetics of calcium oxalate monohydrate (COM), the most common constituent of kidney stones, while carefully monitoring the pseudo-polymorphic transitions. The precipitation kinetics of COM is studied as a function of supersaturation and pH as well as in the presence of inhibitors of stone formation, magnesium ions (Mg2+), and osteopontin (OPN). We rationalize the trends observed in the measured nucleation rates leveraging a solution chemistry model validated using isothermal solubility measurements. In equimolar calcium and oxalate ion concentrations with different buffer solutions, dramatically slower kinetics is observed at pH 6.0 compared to pHs 3.6 and 8.6. The addition of both Mg2+ and OPN to the solution slows down kinetics appreciably. Interestingly, complete nucleation inhibition is observed at significantly lower OPN, namely, 3.2 × 10-8 M, than Mg2+ concentrations, 0.875 × 10-4 M. The observed inhibition effect of OPN emphasizes the often-overlooked role of macromolecules on COM nucleation due to their low concentration presence in urine. Moreover, analysis of growth rates calculated from observed lag times suggests that inhibition in the presence of Mg2+ cannot be explained solely on altered supersaturation. The presented study highlights the potential of microfluidics in overcoming a major challenge in nephrolithiasis research, the overwhelming physiochemical complexity of urine.

5.
Angew Chem Int Ed Engl ; 55(52): 16088-16091, 2016 12 23.
Article in English | MEDLINE | ID: mdl-27860094

ABSTRACT

When applied to a pure component suspension in an apolar solvent, a strong inhomogeneous electric field induces particle movement, and the particles are collected at the surface of one of the two electrodes. This new phenomenon was used to separately isolate two organic crystalline compounds, phenazine and caffeine, from their suspension in 1,4-dioxane. First, crystals of both compounds were collected at different electrodes under the influence of an electric field. Subsequent cooling crystallization enabled the immobilization and growth of the particles on the electrodes, which were separately collected after the experiment with purities greater than 91 %. This method can be further developed into a technique for crystal separation and recovery in complex multicomponent suspensions of industrial processes.

6.
J Forensic Sci ; 61(5): 1198-207, 2016 09.
Article in English | MEDLINE | ID: mdl-27356279

ABSTRACT

Studying links between triacetone triperoxide (TATP) samples from crime scenes and suspects can assist in criminal investigations. Isotope ratio mass spectrometry (IRMS) and gas chromatography (GC)-IRMS were used to measure the isotopic compositions of TATP and its precursors acetone and hydrogen peroxide. In total, 31 TATP samples were synthesized with different raw material combinations and reaction conditions. For carbon, a good differentiation and a linear relationship were observed for acetone-TATP combinations. The extent of negative (δ(13) C) fractionation depended on the reaction yield. Limited enrichment was observed for the hydrogen isotope (δ(2) H) values of the TATP samples probably due to a constant exchange of hydrogen atoms in aqueous solution. For oxygen (δ(18) O), the small isotopic range and excess of water in hydrogen peroxide resulted in poor differentiation. GC-IRMS and IRMS data were comparable except for one TATP sample prepared with high acid concentration demonstrating the potential of compound-specific isotope analysis. Carbon IRMS has practical use in forensic TATP investigations.

7.
J Pharm Biomed Anal ; 76: 1-7, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23287488

ABSTRACT

Interest in submicron-sized drug particles has emerged from both laboratory and industrial perspectives in the last decade. Production of crystals in the nano size scale offers a novel way to particles for drug formulation solving formulation problems of drugs with low solubility in class II of the Biopharmaceutical Classification System. In this work niflumic acid nanoparticles with a size range of 200-800nm were produced by the novel crystallization method, electrospray crystallization. Their properties were compared to those from evaporative and anti-solvent crystallizations, using the same organic solvent, acetone. There is a remarkable difference in the product crystal size depending on the applied methods. The size and morphology were analyzed by scanning electron microscopy and laser diffraction. The structure of the samples was investigated using differential scanning calorimetry, Fourier-transformed infrared spectroscopy and X-ray powder diffraction. The particles produced using electrospray crystallization process were probably changing from amorphous to crystalline state after the procedure.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Drug Compounding/methods , Nanoparticles , Niflumic Acid/chemistry , Acetone/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Calorimetry, Differential Scanning , Crystallization , Microscopy, Electron, Scanning , Niflumic Acid/administration & dosage , Particle Size , Solubility , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL