Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(5): 1880-92, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24144360

ABSTRACT

Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
2.
Methods Mol Biol ; 1030: 119-27, 2013.
Article in English | MEDLINE | ID: mdl-23821264

ABSTRACT

This chapter describes the procedures for production of recombinant hepatitis C virus (HCV) NS3 protease from clinical samples, which can be used in the biochemical assays to assess the impact of different drug-resistant mutations in the NS3 protein from patients under therapy of protease inhibitors. It gives the details of expression and purification of NS3 protease using the pCold vectors that contains a promoter derived from the cold-shock genes to drive the expression of NS3 protein. This robust protocol enables a medium-throughput production of HCV NS3 proteins of all genotypes and sequences derived from patient specimen.


Subject(s)
Gene Expression , Hepacivirus/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Cloning, Molecular , Gene Order , Genetic Vectors , Hepacivirus/isolation & purification , Humans , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transformation, Bacterial , Viral Nonstructural Proteins/metabolism
3.
Antimicrob Agents Chemother ; 56(9): 4676-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710121

ABSTRACT

Hepatitis C virus (HCV) infection is a major global health burden and is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma. There remains an unmet medical need for efficacious and safe direct antivirals with complementary modes of action for combination in treatment regimens to deliver a high cure rate with a short duration of treatment for HCV patients. Here we report the in vitro inhibitory activity, mode of action, binding kinetics, and resistance profile of TMC647055, a novel and potent nonnucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase. In vitro combination studies with an HCV NS3/4A protease inhibitor demonstrated potent suppression of HCV RNA replication, confirming the potential for combination of these two classes in the treatment of chronic HCV infection. TMC647055 is a potent nonnucleoside NS5B polymerase inhibitor of HCV replication with a promising in vitro biochemical, kinetic, and virological profile that is currently undergoing clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Cell Line , Cloning, Molecular , Drug Combinations , Drug Synergism , Escherichia coli/genetics , Genes, Reporter , Hepacivirus/enzymology , Hepacivirus/genetics , Hepacivirus/growth & development , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Plasmids , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Transfection , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
4.
Bioorg Med Chem Lett ; 22(13): 4437-43, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22633687

ABSTRACT

Optimization of a novel series of macrocyclic indole-based inhibitors of the HCV NS5b polymerase targeting the finger loop domain led to the discovery of lead compounds exhibiting improved potency in cellular assays and superior pharmacokinetic profile. Further lead optimization performed on the most promising unsaturated-bridged subseries provided the clinical candidate 27-cyclohexyl-12,13,16,17-tetrahydro-22-methoxy-11,17-dimethyl-10,10-dioxide-2,19-methano-3,7:4,1-dimetheno-1H,11H-14,10,2,9,11,17-benzoxathiatetraazacyclo docosine-8,18(9H,15H)-dione, TMC647055 (compound 18a). This non-zwitterionic 17-membered ring macrocycle combines nanomolar cellular potency (EC(50) of 82 nM) with minimal associated cell toxicity (CC(50)>20 µM) and promising pharmacokinetic profiles in rats and dogs. TMC647055 is currently being evaluated in the clinic.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indoles/chemistry , Sulfonamides/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Humans , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
6.
Bioorg Med Chem Lett ; 19(9): 2492-6, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19342234

ABSTRACT

Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC(50)=400nM and 270nM, respectively) and selective (CC(50)>20muM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.


Subject(s)
Antiviral Agents/chemical synthesis , Benzodiazepines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Acrylates/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Drug Design , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Structure , Structure-Activity Relationship
7.
Antimicrob Agents Chemother ; 52(12): 4420-31, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18852280

ABSTRACT

The exogenous control of hepatitis C virus (HCV) replication can be mediated through the inhibition of the RNA-dependent RNA polymerase (RdRp) activity of NS5B. Small-molecule inhibitors of NS5B include nucleoside and nonnucleoside analogs. Here, we report the discovery of a novel class of HCV polymerase nonnucleoside inhibitors, 1,5-benzodiazepines (1,5-BZDs), identified by high-throughput screening of a library of small molecules. A fluorescence-quenching assay and X-ray crystallography revealed that 1,5-BZD 4a bound stereospecifically to NS5B next to the catalytic site. When introduced into replicons, mutations known to confer resistance against chemotypes that bind at this site were detrimental to inhibition by 1,5-BZD 7a. Using a panel of enzyme isolates that covered genotypes 1 to 6, we showed that compound 4a inhibited genotype 1 only. In mechanistic studies, 4a was found to inhibit the RdRp activity of NS5B noncompetitively with GTP and to inhibit the formation of the first phosphodiester bond during the polymerization cycle. The specificity for the HCV target was evaluated by profiling the 1,5-BZDs against other viral and human polymerases, as well as BZD receptors.


Subject(s)
Benzodiazepines/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Benzodiazepines/chemistry , Benzodiazepines/metabolism , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Genotype , Hepacivirus/enzymology , Hepacivirus/genetics , Hepacivirus/physiology , Humans , Models, Molecular , Molecular Sequence Data , Mutation , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
8.
J Virol ; 81(13): 6909-19, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17459932

ABSTRACT

The search for hepatitis C virus polymerase inhibitors has resulted in the identification of several nonnucleoside binding pockets. The shape and nature of these binding sites differ across and even within diverse hepatitis C virus genotypes. These differences confront antiviral drug discovery with the challenge of finding compounds that are capable of inhibition in variable binding pockets. To address this, we have established a hepatitis C virus mutant and genotypic recombinant polymerase panel as a means of guiding medicinal chemistry through the elucidation of the site of action of novel inhibitors and profiling against genotypes. Using a genotype 1b backbone, we demonstrate that the recombinant P495L, M423T, M414T, and S282T mutant enzymes can be used to identify the binding site of an acyl pyrrolidine analog. We assess the inhibitory activity of this analog and other nonnucleoside inhibitors with our panel of enzyme isolates generated from clinical sera representing genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a, and 6a.


Subject(s)
Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Pyrrolidines/chemistry , RNA-Dependent RNA Polymerase/chemistry , Amino Acid Substitution , Base Sequence , Binding Sites/genetics , Genotype , Hepacivirus/genetics , Humans , Molecular Sequence Data , Mutation, Missense , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...