Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 14(5): 2696-2704, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29562134

ABSTRACT

Amyloid-ß (Aß) protein aggregates through a complex pathway to progress from monomers to soluble oligomers and ultimately insoluble fibrils. Because of the dynamic nature of aggregation, it has proven exceedingly difficult to determine the precise interactions that lead to the formation of transient oligomers. Here, a statistical thermodynamic model has been developed to elucidate these interactions. Aß1-42 was simulated using fully atomistic replica exchange molecular dynamics. We use an ensemble of approximately 5 × 105 configurations taken from simulation as input in a self-consistent field theory that explicitly accounts for the size, shape, and charge distribution of both the amino acids comprising Aß and all molecular species present in solution. The solution of the model equations provides a prediction of the probabilities of the configurations of the Aß dimer and the potential of mean force between two monomers during the dimerization process. This model constitutes a reliable methodology to elucidate the underlying physics of the Aß dimerization process as a function of pH, temperature, and salt concentration. The results obtained with this new model could be valuable in the design of Aß oligomerization inhibitors, a prospective therapeutic for Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/chemistry , Molecular Dynamics Simulation , Dimerization , Hydrogen-Ion Concentration , Temperature , Thermodynamics
2.
J Biol Eng ; 11: 5, 2017.
Article in English | MEDLINE | ID: mdl-28191036

ABSTRACT

BACKGROUND: Deposits of aggregated amyloid-ß protein (Aß) are a pathological hallmark of Alzheimer's disease (AD). Thus, one therapeutic strategy is to eliminate these deposits by halting Aß aggregation. While a variety of possible aggregation inhibitors have been explored, only nanoparticles (NPs) exhibit promise at low substoichiometric ratios. With tunable size, shape, and surface properties, NPs present an ideal platform for rationally designed Aß aggregation inhibitors. In this study, we characterized the inhibitory capabilities of gold nanospheres exhibiting different surface coatings and diameters. RESULTS: Both NP diameter and surface chemistry were found to modulate the extent of aggregation, while NP electric charge influenced aggregate morphology. Notably, 8 nm and 18 nm poly(acrylic acid)-coated NPs abrogated Aß aggregation at a substoichiometric ratio of 1:2,000,000. Theoretical calculations suggest that this low stoichiometry could arise from altered solution conditions near the NP surface. Specifically, local solution pH and charge density are congruent with conditions that influence aggregation. CONCLUSIONS: These findings demonstrate the potential of surface-coated gold nanospheres to serve as tunable therapeutic agents for the inhibition of Aß aggregation. Insights gained into the physiochemical properties of effective NP inhibitors will inform future rational design of effective NP-based therapeutics for AD.

3.
CNS Neurosci Ther ; 23(2): 135-144, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27864869

ABSTRACT

AIMS: Epidemiological evidence implicates polyphenols as potential natural therapeutics for Alzheimer's disease (AD). To investigate this prospect, five anthoxanthin polyphenols were characterized for their ability to reduce amyloid-ß (Aß) oligomer-induced neuronal responses by two mechanisms of action, modulation of oligomerization and antioxidant activity, as well as the synergy between these two mechanisms. METHODS: Anthoxanthin oligomerization modulation and antioxidant capabilities were evaluated and correlated with anthoxanthin attenuation of oligomer-induced intracellular reactive oxygen species (ROS) and caspase activation using human neuroblastoma cell treatments designed to isolate these mechanisms of action and to achieve dual-action. RESULTS: While modulation of oligomerization resulted in only minor reductions to neuronal responses, anthoxanthin antioxidant action significantly attenuated oligomer-induced intracellular ROS and caspase activation. Kaempferol uniquely exhibited synergism when the two mechanisms functioned in concert, leading to a pronounced reduction in both ROS and caspase activation. CONCLUSIONS: Together, these findings identify the dominant mechanism by which these anthoxanthins attenuate Aß oligomer-induced neuronal responses, elucidate their prospective synergy, and demonstrate the potential of anthoxanthin polyphenols as natural AD therapeutics.


Subject(s)
Amyloid beta-Peptides/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Polyphenols/pharmacology , Apigenin/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Humans , Hydrogen Peroxide/pharmacology , Kaempferols , Luteolin/pharmacology , Neuroblastoma/pathology , Neuroprotective Agents/chemistry , Polyphenols/chemistry , Protein Conformation , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Protein Eng Des Sel ; 29(5): 177-86, 2016 May.
Article in English | MEDLINE | ID: mdl-26957645

ABSTRACT

Granulins (Grns) are a family of small, cysteine-rich proteins that are generated upon proteolytic cleavage of their precursor, progranulin (Pgrn). All seven Grns (A-G) contain 12 conserved cysteines that form 6 intramolecular disulfide bonds, rendering this family of proteins unique. Grns are known to play multi-functional roles, including wound healing, embryonic growth, and inflammation and are implicated in neurodegenerative diseases. Despite their manifold functions, there exists a dearth of information regarding their structure-function relationship. Here, we sought to establish the role of disulfide bonds in promoting structure by investigating the fully reduced GrnB (rGrnB). We report that monomeric rGrnB is an intrinsically disordered protein (IDP) at low concentrations. rGrnB undergoes dimerization at higher concentrations to form a fuzzy complex without a net gain in the structure-a behavior increasingly identified as a hallmark of some IDPs. Interestingly, we show that rGrnB is also able to activate NF-κB in human neuroblastoma cells in a concentration-dependent manner. This activation correlates with the observed monomer-dimer dynamics. Collectively, the presented data establish that the intrinsic disorder of rGrnB governs conformational dynamics within the reduced form of the protein, and suggest that the overall structure of Grns could be entirely dictated by disulfide bonds.


Subject(s)
Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Cell Line, Tumor , Conserved Sequence , Granulins , Humans , NF-kappa B/metabolism , Oxidation-Reduction , Protein Multimerization , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...