Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Mol Psychiatry ; 28(9): 3874-3887, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37495887

ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.


Subject(s)
Depression , Tandem Mass Spectrometry , Humans , Depression/metabolism , Diet , Metabolome/genetics , Vitamin A/metabolism , Hippurates , Metabolomics/methods
2.
J Affect Disord ; 323: 1-9, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36372132

ABSTRACT

BACKGROUND: In a substantial subgroup of depressed patients, atypical, energy-related depression symptoms (e.g. increased appetite/weight, hypersomnia, loss of energy) tend to cluster with immuno-metabolic dysregulations (e.g. increased BMI and inflammatory markers). This clustering is proposed to reflect a more homogeneous depression pathology. This study examines to what extent energy-related symptoms are associated and share sociodemographic, lifestyle and clinical characteristics. METHODS: Data were available from 13,965 participants from eight Dutch cohorts with DSM-5 lifetime major depression assessed by the Lifetime Depression Assessment Self-report (LIDAS) questionnaire. Information on four energy-related depression symptoms were extracted: energy loss, increased appetite, increased weight, and hypersomnia. Tetrachoric correlations between these symptoms, and associations of these symptoms with sociodemographic (sex, age, education), lifestyle (physical activity, BMI, smoking) and clinical characteristics (age of onset, episode duration, history, treatment and recency, and self-reported comorbidity) were computed. RESULTS: Correlations between energy-related symptoms were overall higher than those with other depression symptoms and varied from 0.90 (increased appetite vs increased weight) to 0.11 (increased appetite vs energy loss). All energy-related symptoms were strongly associated with higher BMI and a more severe clinical profile. Patients with increased appetite were more often smokers, and only patients with increased appetite or weight more often had a self-reported diagnosis of PTSD (OR = 1.17, p = 2.91E-08) and eating disorder (OR = 1.40, p = 4.08E-17). CONCLUSIONS: The symptom-specific associations may have consequences for a profile integrating these symptoms, which can be used to reflect immuno-metabolic depression. They indicate the need to study immuno-metabolic depression at individual symptom resolution as a starting point.


Subject(s)
Depressive Disorder, Major , Disorders of Excessive Somnolence , Humans , Depression/epidemiology , Depression/diagnosis , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Comorbidity , Weight Gain , Fatigue
3.
Hum Mol Genet ; 31(7): 1159-1170, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34875050

ABSTRACT

Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.


Subject(s)
Leukocytes , Telomere Shortening , Biomarkers/metabolism , Cross-Sectional Studies , Fatty Acids/metabolism , Humans , Leukocytes/metabolism , Lipids , Telomere/genetics
5.
BMC Pulm Med ; 20(1): 193, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32677943

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. METHODS: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. RESULTS: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10- 4 in the discovery and OR = 1.30, P = 1.8 × 10- 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52-2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94-1.20). CONCLUSIONS: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.


Subject(s)
Glycoproteins/blood , Metabolomics/methods , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Female , Glycoproteins/chemistry , Humans , Logistic Models , Lung/metabolism , Male , Mendelian Randomization Analysis , Middle Aged , Netherlands/epidemiology , Prognosis , Pulmonary Disease, Chronic Obstructive/mortality , Risk Factors , Survival Rate
6.
Front Genet ; 11: 337, 2020.
Article in English | MEDLINE | ID: mdl-32425970

ABSTRACT

Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10-7, minor allele frequency of 0.2-0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10-6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10-4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants.

7.
Am J Hum Genet ; 106(3): 389-404, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109421

ABSTRACT

Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1, PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.


Subject(s)
Genome-Wide Association Study , Leukocytes/ultrastructure , Nucleotides/metabolism , Telomere , Humans
8.
Psychol Med ; : 1-10, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32102724

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a common mood disorder, with a heritability of around 34%. Molecular genetic studies made significant progress and identified genetic markers associated with the risk of MDD; however, progress is slowed down by substantial heterogeneity as MDD is assessed differently across international cohorts. Here, we used a standardized online approach to measure MDD in multiple cohorts in the Netherlands and evaluated whether this approach can be used in epidemiological and genetic association studies of depression. METHODS: Within the Biobank Netherlands Internet Collaboration (BIONIC) project, we collected MDD data in eight cohorts involving 31 936 participants, using the online Lifetime Depression Assessment Self-report (LIDAS), and estimated the prevalence of current and lifetime MDD in 22 623 unrelated individuals. In a large Netherlands Twin Register (NTR) twin-family dataset (n ≈ 18 000), we estimated the heritability of MDD, and the prediction of MDD in a subset (n = 4782) through Polygenic Risk Score (PRS). RESULTS: Estimates of current and lifetime MDD prevalence were 6.7% and 18.1%, respectively, in line with population estimates based on validated psychiatric interviews. In the NTR heritability estimates were 0.34/0.30 (s.e. = 0.02/0.02) for current/lifetime MDD, respectively, showing that the LIDAS gives similar heritability rates for MDD as reported in the literature. The PRS predicted risk of MDD (OR 1.23, 95% CI 1.15-1.32, R2 = 1.47%). CONCLUSIONS: By assessing MDD status in the Netherlands using the LIDAS instrument, we were able to confirm previously reported MDD prevalence and heritability estimates, which suggests that this instrument can be used in epidemiological and genetic association studies of depression.

9.
Nat Commun ; 10(1): 5121, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719535

ABSTRACT

Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.


Subject(s)
Genetic Loci , Lipids/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sleep/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Chromosome Mapping , Female , Humans , Male , Middle Aged , Young Adult
10.
Nat Commun ; 10(1): 3346, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431621

ABSTRACT

Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.


Subject(s)
Metabolomics/methods , Mortality , Survival Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Metabolome , Middle Aged , Prognosis , Risk Assessment , Risk Factors , Young Adult
11.
Sci Rep ; 9(1): 11623, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406173

ABSTRACT

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.


Subject(s)
Homocysteine/metabolism , Leukocytes/ultrastructure , Lipid Metabolism , Metabolomics/methods , Telomere , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Telomere Shortening
12.
Nat Commun ; 10(1): 3669, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413261

ABSTRACT

Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.


Subject(s)
Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Heat-Shock Proteins/genetics , Longevity/genetics , Endoplasmic Reticulum Chaperone BiP , Genome-Wide Association Study , Humans
13.
Nat Commun ; 10(1): 1585, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952852

ABSTRACT

Sleep is an essential human function but its regulation is poorly understood. Using accelerometer data from 85,670 UK Biobank participants, we perform a genome-wide association study of 8 derived sleep traits representing sleep quality, quantity and timing, and validate our findings in 5,819 individuals. We identify 47 genetic associations at P < 5 × 10-8, of which 20 reach a stricter threshold of P < 8 × 10-10. These include 26 novel associations with measures of sleep quality and 10 with nocturnal sleep duration. The majority of identified variants associate with a single sleep trait, except for variants previously associated with restless legs syndrome. For sleep duration we identify a missense variant (p.Tyr727Cys) in PDE11A as the likely causal variant. As a group, sleep quality loci are enriched for serotonin processing genes. Although accelerometer-derived measures of sleep are imperfect and may be affected by restless legs syndrome, these findings provide new biological insights into sleep compared to previous efforts based on self-report sleep measures.


Subject(s)
Polysomnography/methods , Sleep Wake Disorders/genetics , Sleep/genetics , Accelerometry/methods , Circadian Rhythm , Humans , Polymorphism, Single Nucleotide , Serotonin/genetics , Serotonin/metabolism , Sleep Wake Disorders/diagnosis , Waist-Hip Ratio
14.
Front Aging Neurosci ; 11: 20, 2019.
Article in English | MEDLINE | ID: mdl-30809143

ABSTRACT

Background: Alterations in insulin-like growth factor I (IGF-I) signaling have been associated with dementia and Alzheimer's disease (AD). Studies on the association between IGF-I levels and dementia risk have been inconclusive. We reported earlier that higher levels of IGF-I receptor stimulating activity are associated with a higher prevalence and incidence of dementia. Objective: In the present study, we test the robustness of the association between IGF-I receptor stimulating activity and dementia by extending the follow-up period to 16 years and investigate possible effect modification by apolipoprotein E (ApoE). Methods: At baseline, circulating IGF-I receptor stimulating activity was determined by the IGF-I kinase receptor activation (KIRA) assay in 1,014 elderly from the Rotterdam Study. Dementia was assessed from baseline (1997-1999) to follow-up in January 2015. Associations of IGF-I receptor stimulating activity and incident dementia were assessed with Cox proportional hazards models. Results: During 10,752 person-years of follow-up, 174 people developed dementia. In the extended follow-up we no longer observed a dose-response relationship between IGF-I receptor stimulating activity and risk of dementia [adjusted odds ratio 1.11; 95% confidence interval (CI) 0.97-1.28]. Interestingly, we found evidence of an interaction between ApoE-ε4 and tertiles of IGF-I receptor stimulating activity. IGF-I receptor stimulating activity in the median and top tertiles was related to increased dementia incidence in hetero- and homozygotes of the ApoE-ε4 allele, but did not show any association with dementia risk in people without the ApoE-ε4 allele (adjusted odds ratio medium vs. low IGF-I receptor stimulating activity in ApoE-ε4 carriers: 1.45; 95% CI 1.00-2.12). These findings suggest a threshold effect in ApoE-ε4 carriers. In line with the hypothesis that downregulation of IGF-I signaling is associated with increased dementia risk, ApoE-ε4 homozygotes without prevalent dementia displayed lower levels of IGF-I receptor stimulating activity than heterozygotes and non-carriers. Conclusion: The findings shed new light on the association between IGF-I signaling and the neuropathology of dementia and ask for replication in other cohorts, using measures of IGF-I receptor stimulating activity rather than total serum levels as putative markers of dementia risk.

15.
NPJ Sci Learn ; 3: 7, 2018.
Article in English | MEDLINE | ID: mdl-30631468

ABSTRACT

Educational attainment is a key behavioural measure in studies of cognitive and physical health, and socioeconomic status. We measured DNA methylation at 410,746 CpGs (N = 4152) and identified 58 CpGs associated with educational attainment at loci characterized by pleiotropic functions shared with neuronal, immune and developmental processes. Associations overlapped with those for smoking behaviour, but remained after accounting for smoking at many CpGs: Effect sizes were on average 28% smaller and genome-wide significant at 11 CpGs after adjusting for smoking and were 62% smaller in never smokers. We examined sources and biological implications of education-related methylation differences, demonstrating correlations with maternal prenatal folate, smoking and air pollution signatures, and associations with gene expression in cis, dynamic methylation in foetal brain, and correlations between blood and brain. Our findings show that the methylome of lower-educated people resembles that of smokers beyond effects of their own smoking behaviour and shows traces of various other exposures.

16.
Front Genet ; 8: 151, 2017.
Article in English | MEDLINE | ID: mdl-29093733

ABSTRACT

Obstructive sleep apnea (OSA) is a common sleep breathing disorder associated with an increased risk of cardiovascular and cerebrovascular diseases and mortality. Although OSA is fairly heritable (~40%), there have been only few studies looking into the genetics of OSA. In the present study, we aimed to identify genetic variants associated with symptoms of sleep apnea by performing a whole-exome sequence meta-analysis of symptoms of sleep apnea in 1,475 individuals of European descent. We identified 17 rare genetic variants with at least suggestive evidence of significance. Replication in an independent dataset confirmed the association of a rare genetic variant (rs2229918; minor allele frequency = 0.3%) with symptoms of sleep apnea (p-valuemeta = 6.98 × 10-9, ßmeta = 0.99). Rs2229918 overlaps with the 3' untranslated regions of ERCC1 and CD3EAP genes on chromosome 19q13. Both genes are expressed in tissues in the neck area, such as the tongue, muscles, cartilage and the trachea. Further, CD3EAP is localized in the nucleus and mitochondria and involved in the tumor necrosis factor-alpha/nuclear factor kappa B signaling pathway. Our results and biological functions of CD3EAP/ERCC1 genes suggest that the 19q13 locus is interesting for further OSA research.

17.
Nat Commun ; 8(1): 910, 2017 10 13.
Article in English | MEDLINE | ID: mdl-29030599

ABSTRACT

Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.


Subject(s)
HLA-DQ alpha-Chains/genetics , HLA-DRB1 Chains/genetics , Life Style , Lipoprotein(a)/genetics , Longevity/genetics , Alleles , Body Mass Index , Coronary Disease/blood , Coronary Disease/etiology , Education , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Insulin Resistance/genetics , Lipoproteins, HDL/blood , Lung Neoplasms/blood , Lung Neoplasms/genetics , Obesity/complications , Obesity/genetics , Polymorphism, Single Nucleotide , Smoking/adverse effects , Socioeconomic Factors
18.
Metabolomics ; 13(9): 104, 2017.
Article in English | MEDLINE | ID: mdl-28804275

ABSTRACT

BACKGROUND: The growing field of metabolomics has opened up new opportunities for prediction of type 2 diabetes (T2D) going beyond the classical biochemistry assays. OBJECTIVES: We aimed to identify markers from different pathways which represent early metabolic changes and test their predictive performance for T2D, as compared to the performance of traditional risk factors (TRF). METHODS: We analyzed 2776 participants from the Erasmus Rucphen Family study from which 1571 disease free individuals were followed up to 14-years. The targeted metabolomics measurements at baseline were performed by three different platforms using either nuclear magnetic resonance spectroscopy or mass spectrometry. We selected 24 T2D markers by using Least Absolute Shrinkage and Selection operator (LASSO) regression and tested their association to incidence of disease during follow-up. RESULTS: The 24 markers i.e. high-density, low-density and very low-density lipoprotein sub-fractions, certain triglycerides, amino acids, and small intermediate compounds predicted future T2D with an area under the curve (AUC) of 0.81. The performance of the metabolic markers compared to glucose was significantly higher among the young (age < 50 years) (0.86 vs. 0.77, p-value <0.0001), the female (0.88 vs. 0.84, p-value =0.009), and the lean (BMI < 25 kg/m2) (0.85 vs. 0.80, p-value =0.003). The full model with fasting glucose, TRFs, and metabolic markers yielded the best prediction model (AUC = 0.89). CONCLUSIONS: Our novel prediction model increases the long-term prediction performance in combination with classical measurements, brings a higher resolution over the complexity of the lipoprotein component, increasing the specificity for individuals in the low risk group.

19.
Sci Rep ; 6: 31590, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27561104

ABSTRACT

Coffee is one of the most consumed beverages world-wide and one of the primary sources of caffeine intake. Given its important health and economic impact, the underlying genetics of its consumption has been widely studied. Despite these efforts, much has still to be uncovered. In particular, the use of non-additive genetic models may uncover new information about the genetic variants driving coffee consumption. We have conducted a genome-wide association study in two Italian populations using additive, recessive and dominant models for analysis. This has uncovered a significant association in the PDSS2 gene under the recessive model that has been replicated in an independent cohort from the Netherlands (ERF). The identified gene has been shown to negatively regulate the expression of the caffeine metabolism genes and can thus be linked to coffee consumption. Further bioinformatics analysis of eQTL and histone marks from Roadmap data has evidenced a possible role of the identified SNPs in regulating PDSS2 gene expression through enhancers present in its intron. Our results highlight a novel gene which regulates coffee consumption by regulating the expression of the genes linked to caffeine metabolism. Further studies will be needed to clarify the biological mechanism which links PDSS2 and coffee consumption.


Subject(s)
Alkyl and Aryl Transferases/genetics , Caffeine/administration & dosage , Coffee , Genome-Wide Association Study/methods , Adult , Alkyl and Aryl Transferases/metabolism , Caffeine/metabolism , Cohort Studies , Drinking Behavior , Female , Gene Expression Profiling , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
20.
Eur J Hum Genet ; 24(10): 1488-95, 2016 10.
Article in English | MEDLINE | ID: mdl-27142678

ABSTRACT

Time to fall asleep (sleep latency) is a major determinant of sleep quality. Chronic, long sleep latency is a major characteristic of sleep-onset insomnia and/or delayed sleep phase syndrome. In this study we aimed to discover common polymorphisms that contribute to the genetics of sleep latency. We performed a meta-analysis of genome-wide association studies (GWAS) including 2 572 737 single nucleotide polymorphisms (SNPs) established in seven European cohorts including 4242 individuals. We found a cluster of three highly correlated variants (rs9900428, rs9907432 and rs7211029) in the RNA-binding protein fox-1 homolog 3 gene (RBFOX3) associated with sleep latency (P-values=5.77 × 10(-08), 6.59 × 10(-)(08) and 9.17 × 10(-)(08)). These SNPs were replicated in up to 12 independent populations including 30 377 individuals (P-values=1.5 × 10(-)(02), 7.0 × 10(-)(03) and 2.5 × 10(-)(03); combined meta-analysis P-values=5.5 × 10(-07), 5.4 × 10(-07) and 1.0 × 10(-07)). A functional prediction of RBFOX3 based on co-expression with other genes shows that this gene is predominantly expressed in brain (P-value=1.4 × 10(-316)) and the central nervous system (P-value=7.5 × 10(-)(321)). The predicted function of RBFOX3 based on co-expression analysis with other genes shows that this gene is significantly involved in the release cycle of neurotransmitters including gamma-aminobutyric acid and various monoamines (P-values<2.9 × 10(-11)) that are crucial in triggering the onset of sleep. To conclude, in this first large-scale GWAS of sleep latency we report a novel association of variants in RBFOX3 gene. Further, a functional prediction of RBFOX3 supports the involvement of RBFOX3 with sleep latency.


Subject(s)
Antigens, Nuclear/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Sleep/genetics , Brain/metabolism , Humans , Synaptic Transmission/genetics
SELECTION OF CITATIONS
SEARCH DETAIL