Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photoacoustics ; 38: 100636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139613

ABSTRACT

Spectral photoacoustic imaging in combination with unmixing techniques may be applied to retrieve information about high-risk features present in atherosclerotic plaques, possibly providing prognostic insights into future stroke events. We present the photoacoustic spectral contrast found in 12 systematically scanned advanced atherosclerotic plaques in the near-infrared wavelength range (850-1250 nm). The main absorbers are lipid, water, and hemoglobin, with the highest photoacoustic intensities at the lipid's second overtone at 1190 and 1210 nm. Linear unmixing resulted in visualizing regions with high lipid and hemoglobin absorption, corresponding to the histological presence of lipid and intraplaque hemorrhage. A non-negative matrix factorization approach reveals differences in lipid spectral contrast, providing potential insights into the vulnerability of atherosclerotic plaque. These results provide a reference for future, more complex, in vivo photoacoustic imaging of carotid artery atherosclerosis, potentially contributing to assessing the risk of future events and treatment decision.

2.
J Lipid Res ; 65(2): 100504, 2024 02.
Article in English | MEDLINE | ID: mdl-38246237

ABSTRACT

Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.


Subject(s)
Coronary Artery Disease , Hyperlipoproteinemia Type II , Plaque, Atherosclerotic , Animals , Swine , Lipidomics , Ceramides , Necrosis , Phosphatidylcholines , Phospholipid Ethers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL