Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 30(8): 2047-53, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24520857

ABSTRACT

In this paper, we show the electrochemical deposition of a subnanometer film of nickel (Ni) on top of titanium nitride (TiN). We exploit the concept of cluster growth inhibition to enhance the nucleation of new nuclei on the TiN substrate. By deliberately using an unbuffered electrolyte solution, the degree of nucleation is enhanced as growth is inhibited more strongly. This results in a very high particle density and therefore an ultralow coalescence thickness. To prevent the termination of Ni deposition that typically occurs in unbuffered solutions, the concentration of Ni(2+) in solution was increased. We have verified with RBS and ICP-MS that the deposition of Ni on the surface in this case did not terminate. Furthermore, annealing experiments were used to visualize the closed nature of the Ni film. The closure of the deposited film was also confirmed by TOF-SIMS measurements and occurs when the film thickness is still in the subnanometer regime. The ultrathin Ni film was found to be an excellent catalyst for carbon nanotube growth on conductive substrates and can also be applied as a seed layer for bulk deposition of a smooth Ni film on TiN.

2.
Nanotechnology ; 23(40): 405604, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22990089

ABSTRACT

We investigate colloidal Fe(3)O(4) nanocrystals as a catalyst system for carbon nanotube (CNT) growth that allows for decoupling the CNT growth step from the catalyst shaping and activation step. The system consists of 6.4 nm Fe(3)O(4) nanocrystals synthesized using a solution-based thermal decomposition reaction and, subsequently, transferred as hexagonally ordered Langmuir-Blodgett (LB) monolayers on TiN substrates. We demonstrate for the first time aligned CNT growth from LB deposited nanocrystals on a metallic underlayer. The hexagonally ordered monolayers of catalyst particles show promising stability up to the CNT growth temperature. In situ TEM heating experiments were performed to find this onset of particle deformation and showed stability of the nanoparticles up to 600 °C. The particle coalescence at high temperatures was also evidenced by the increasing CNT diameter, from 9.5 nm at 580 °C to 16 nm at 630 °C. By choosing to work at temperatures below the onset particle coalescence temperature, equivalent CNT diameters were obtained under different catalyst activation and growth conditions. The high stability of the catalyst on the metallic underlayer enables us to study CNT growth kinetics independently of the catalyst shaping step. This work opens a route towards combining growth studies with an electrical evaluation of the CNT growth as the TiN can be used as the bottom contact.

3.
Nanotechnology ; 21(43): 435203, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20890016

ABSTRACT

We report a change in the semimetallic nature of single-layer graphene after exposure to oxygen plasma. The resulting transition from semimetallic to semiconducting behavior appears to depend on the duration of the exposure to the plasma treatment. The observation is confirmed by electrical, photoluminescence and Raman spectroscopy measurements. We explain the opening of a bandgap in graphene in terms of functionalization of its pristine lattice with oxygen atoms. Ab initio calculations show more details about the interaction between carbon and oxygen atoms and the consequences on the optoelectronic properties, that is, on the extent of the bandgap opening upon increased functionalisation density.

4.
Org Lett ; 8(11): 2333-6, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706519

ABSTRACT

[reaction: see text] The synthesis of a molecular wire bearing an anthraquinone core and thioacetyl end groups for gold electrode binding is described. A model anthraquinone system, substituted with tert-butylthio groups, can be reversibly switched electrochemically from cross conjugated (low conductance "off") to linear conjugated (high conductance "on") via two-electron reduction/oxidation reactions. This feature holds promise for the anthraquinone-based wires to be used as redox-controlled switches in molecular electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...