Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biosaf ; 24(2): 64-71, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-36033940

ABSTRACT

Introduction: The international synthetic biology competition iGEM (formally known as the international Genetically Engineered Machines competition) has a dedicated biosafety and biosecurity program. Method: A review of specific elements of the program and a series of concrete examples illustrate how experiences in implementing the program have helped improved policy, including an increasing diversity of sources for genetic parts and organisms, keeping pace with technical developments, considering pathways toward future environmental release, addressing antimicrobial resistance, and testing the efficacy of current biosecurity arrangements. Results: iGEM's program is forward-leaning, in that it addresses both traditional (pathogen-based) and emerging risks both in terms of new technologies and new risks. It is integrated into the technical work of the competition-with clearly described roles and responsibilities for all members of the community. It operates throughout the life cycle of projects-from project design to future application. It makes use of specific tools to gather and review biosafety and biosecurity information, making it easier for those planning and conducting science and engineering to recognize potential risks and match them with appropriate risk management approaches, as well as for specialists to review this information to identify gaps and strengthen plans. Discussion: Integrating an increasingly adaptive risk management approach has allowed iGEM's biosafety and biosecurity program to become comprehensive, be cross-cutting, and cover the competition's life cycle.

2.
Trends Biotechnol ; 32(2): 65-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24369876

ABSTRACT

Cultivating algae on a large scale will inevitably lead to spills into natural ecosystems. Most risk analyses have dealt only with transgenic algae, without considering the risks of cultivating the corresponding non-transgenic wild type species. This is despite the long-studied 'paradox of the plankton', which describes the unsuitability of laboratory experimentation or modeling to predict the outcome of introducing non-native algae into a new ecosystem. Risk analyses of transgenic strains of native algae can be based on whether they are more fit or less fit than their wild type, but these are not possible with non-native species. Risks from spills can be minimized by mutagenically or transgenically deleting genes that are unnecessary in culture but obligatory in nature.


Subject(s)
Biotechnology/methods , Environmental Pollution , Microalgae/growth & development , Ecosystem , Organisms, Genetically Modified , Risk
3.
Curr Gene Ther ; 13(6): 395-412, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24397527

ABSTRACT

Risk assessments of clinical applications involving genetically modified viral vectors are carried out according to general principles that are implemented in many national and regional legislations, e.g., in Directive 2001/18/EC of the European Union. Recent developments in vector design have a large impact on the concepts that underpin the risk assessments of viral vectors that are used in clinical trials. The use of (conditionally) replication competent viral vectors (RCVVs) may increase the likelihood of the exposure of the environment around the patient, compared to replication defective viral vectors. Based on this assumption we have developed a methodology for the environmental risk assessment of replication competent viral vectors, which is presented in this review. Furthermore, the increased likelihood of exposure leads to a reevaluation of what would constitute a hazardous gene product in viral vector therapies, and a keen interest in new developments in the inserts used. One of the trends is the use of inserts produced by synthetic biology. In this review the implications of these developments for the environmental risk assessment of RCVVs are highlighted, with examples from current clinical trials. The conclusion is drawn that RCVVs, notwithstanding their replication competency, can be applied in an environmentally safe way, in particular if adequate built-in safeties are incorporated, like conditional replication competency, as mitigating factors to reduce adverse environmental effects that could occur.


Subject(s)
DNA Replication/genetics , DNA Transposable Elements/genetics , Genetic Therapy/methods , Genetic Therapy/standards , Genetic Vectors/adverse effects , Genetic Vectors/standards , Virus Replication/genetics , Animals , Clinical Trials as Topic , Genetic Therapy/adverse effects , Genetic Vectors/genetics , Hazardous Substances/adverse effects , Humans , Risk Assessment
4.
Environ Biosafety Res ; 7(1): 1-9, 2008.
Article in English | MEDLINE | ID: mdl-18384725

ABSTRACT

Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.


Subject(s)
Organisms, Genetically Modified/genetics , Organisms, Genetically Modified/metabolism , Animals , Chromosome Aberrations/chemically induced , Genetic Vectors/genetics , Hazardous Substances/metabolism , Hazardous Substances/toxicity , Humans , Risk Assessment/methods , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...