Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 6(14): 4185-4195, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35580333

ABSTRACT

Acquired T-cell dysfunction is characteristic of chronic lymphocytic leukemia (CLL) and is associated with reduced efficacy of T cell-based therapies. A recently described feature of dysfunctional CLL-derived CD8 T cells is reduced metabolic plasticity. To what extend CD4 T cells are affected and whether CD4 T-cell metabolism and function can be restored upon clinical depletion of CLL cells are currently unknown. We address these unresolved issues by comprehensive phenotypic, metabolic, transcriptomic, and functional analysis of CD4 T cells of untreated patients with CLL and by analysis of the effects of venetoclax plus obinutuzumab on the CD4 population. Resting CD4 T cells derived from patients with CLL expressed lower levels of GLUT-1 and displayed deteriorated oxidative phosphorylation (OXPHOS) and overall reduced mitochondrial fitness. Upon T-cell stimulation, CLL T cells were unable to initiate glycolysis. Transcriptome analysis revealed that depletion of CLL cells in vitro resulted in upregulation of OXPHOS and glycolysis pathways and restored T-cell function in vitro. Analysis of CD4 T cells from patients with CLL before and after venetoclax plus obinutuzumab treatment, which led to effective clearance of CLL in blood and bone marrow, revealed recovery of T-cell activation and restoration of the switch to glycolysis, as well as improved T-cell proliferation. Collectively, these data demonstrate that CLL cells impose metabolic restrictions on CD4 T cells, which leads to reduced CD4 T-cell functionality. This trial was registered in the Netherlands Trial Registry as #NTR6043.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Lymphocytic, Chronic, B-Cell , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Glycolysis/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Oxidative Stress/drug effects , Sulfonamides/pharmacology
2.
Eur Respir J ; 36(6): 1337-45, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20378602

ABSTRACT

Klebsiella pneumoniae is a common cause of nosocomial pneumonia. Osteopontin (OPN) is a phosphorylated glycoprotein involved in inflammatory processes, some of which is mediated by CD44. The aim of this study was to determine the role of OPN during K. pneumoniae-induced pneumonia. Wild-type (WT) and OPN knockout (KO) mice were intranasally infected with 104 colony forming units of K. pneumoniae, or administered Klebsiella lipopolysaccharides (LPS). In addition, recombinant OPN (rOPN) was intranasally administered to WT and CD44 KO mice. During Klebsiella pneumonia, WT mice displayed elevated pulmonary and plasma OPN levels. OPN KO and WT mice showed similar pulmonary bacterial loads 6 h after infection; thereafter, Klebsiella loads were higher in lungs of OPN KO mice and the mortality rate in this group was higher than in WT mice. Early neutrophil recruitment into the bronchoalveolar space was impaired in the absence of OPN after intrapulmonary delivery of either Klebsiella bacteria or Klebsiella LPS. Moreover, rOPN induced neutrophil migration into the bronchoalveolar space, independent from CD44. In vitro, OPN did not affect K. pneumoniae growth or neutrophil function. In conclusion, OPN levels were rapidly increased in the bronchoalveolar space during K. pneumoniae pneumonia, where OPN serves a chemotactic function towards neutrophils, thereby facilitating an effective innate immune response.


Subject(s)
Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Osteopontin/immunology , Pneumonia, Bacterial/immunology , Animals , Bacterial Load , Cytokines/blood , Cytokines/immunology , Hyaluronan Receptors/immunology , Klebsiella pneumoniae/isolation & purification , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Osteopontin/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...