Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(26): 6387-6393, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38916107

ABSTRACT

We report on the fabrication of a single-electron transistor based on ferritin using wide self-aligned nanogap devices. A local gate below the gap area enables three-terminal electrical measurements, showing the Coulomb blockade in good agreement with the single-electron tunneling theory. Comparison with this theory allows extraction of the tunnel resistances, capacitances, and gate coupling. Additionally, the data suggest the presence of two separate islands coupled in series or in parallel: information that was not possible to distinguish by using only two-terminal measurements. To interpret the charge transport features, we propose a scenario based on the established configuration structures of ferritin involving either iron sites in the organic shell or two dissimilar clusters within the core.

2.
Nanoscale ; 16(22): 10751-10759, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38747099

ABSTRACT

Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whilst keeping track of the junction's conductance. Here, we compare results from mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods, while characterizing conductance properties of the same novel mechanosensitive para- and meta-connected naphtalenophane compounds. In addition, thermopower measurements are carried out for both compounds using the STM break junction (STM-BJ) technique. For the conductance experiments, the same data processing using a clustering analysis is performed. We obtain to a large extent similar results for both methods, although values of conductance and stretching lengths for the STM-BJ technique are slightly larger in comparison with the MCBJ. STM-BJ thermopower experiments show similar Seebeck coefficients for both compounds. An increase in the Seebeck coefficient is revealed, whilst the conductance decreases, after which it saturates at around 10 µV K-1. This phenomenon is studied theoretically using a tight binding model. It shows that changes of molecule-electrode electronic couplings combined with shifts of the resonance energies explain the correlated behavior of conductance and Seebeck coefficient.

3.
Nano Lett ; 24(22): 6513-6520, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38652810

ABSTRACT

Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.

4.
J Phys Chem C Nanomater Interfaces ; 128(3): 1413-1422, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38293692

ABSTRACT

The addition of a lateral alkyl chain is a well-known strategy to reduce π-stacked ensembles of molecules in solution, with the intention to minimize the interactions between the molecules' backbones. In this paper, we study whether this concept generalizes to single-molecule junctions by using a combination of mechanically controllable break junction (MCBJ) measurements and clustering-based data analysis with two small series of model compounds decorated with various bulky groups. The systematic study suggests that introducing alkyl side chains also favors the formation of electrode-molecule configurations that are not observed in their absence, thereby inducing broadening of the conductance peak in the one-dimensional histograms. Thus, the introduction of alkyl chains in aromatic compounds for molecular electronics must be carefully designed and optimized for the specific purpose, balancing between increased solubility and the possibility of additional junction configurations.

5.
Phys Chem Chem Phys ; 26(4): 3139-3151, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38189548

ABSTRACT

The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacteria embed a network of regularly spaced, parallel protein fibers in their cell envelope. These fibers exhibit extraordinary electrical properties for a biological material, including an electrical conductivity that can exceed 100 S cm-1. Traditionally, long-range electron transport through proteins is described as a multi-step hopping process, in which the individual hopping steps are described by Marcus electron transport theory. Here, we investigate to what extent such a classical hopping model can explain the conductance data recorded for individual cable bacterium filaments. To this end, the conductive fiber network in cable bacteria is modelled as a set of parallel one-dimensional hopping chains. Comparison of model simulated and experimental current(I)/voltage(V) curves, reveals that the charge transport is field-driven rather than concentration-driven, and there is no significant injection barrier between electrodes and filaments. However, the observed high conductivity levels (>100 S cm-1) can only be reproduced, if we include much longer hopping distances (a > 10 nm) and lower reorganisation energies (λ < 0.2 eV) than conventionally used in electron relay models of protein structures. Overall, our model analysis suggests that the conduction mechanism in cable bacteria is markedly distinct from other known forms of long-range biological electron transport, such as in multi-heme cytochromes.


Subject(s)
Bacteria , Electron Transport , Bacteria/chemistry , Electric Conductivity
6.
Nat Commun ; 14(1): 8503, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129381

ABSTRACT

The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, we show that its temperature dependence in AF MPS3 (M(II) = Fe, Co, Ni) can be probed via the anisotropy in the resonance frequency of rectangular membranes, mediated by a combination of anisotropic magnetostriction and spontaneous staggered magnetization. Density functional calculations followed by a derived orbital-resolved magnetic exchange analysis confirm and unravel the microscopic origin of this magnetization-induced anisotropic strain. We further show that the temperature and thickness dependent order parameter allows to deduce the material's critical exponents characterising magnetic order. Nanomechanical sensing of magnetic order thus provides a future platform to investigate 2D magnetism down to the single-layer limit.

7.
Nano Lett ; 23(23): 11073-11081, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38019289

ABSTRACT

van der Waals heterostructures composed of two-dimensional (2D) transition metal dichalcogenides and vdW magnetic materials offer an intriguing platform to functionalize valley and excitonic properties in nonmagnetic TMDs. Here, we report magneto photoluminescence (PL) investigations of monolayer (ML) MoSe2 on the layered A-type antiferromagnetic (AFM) semiconductor CrSBr under different magnetic field orientations. Our results reveal a clear influence of the CrSBr magnetic order on the optical properties of MoSe2, such as an anomalous linear-polarization dependence, changes of the exciton/trion energies, a magnetic-field dependence of the PL intensities, and a valley g-factor with signatures of an asymmetric magnetic proximity interaction. Furthermore, first-principles calculations suggest that MoSe2/CrSBr forms a broken-gap (type-III) band alignment, facilitating charge transfer processes. The work establishes that antiferromagnetic-nonmagnetic interfaces can be used to control the valley and excitonic properties of TMDs, relevant for the development of opto-spintronics devices.

8.
Phys Chem Chem Phys ; 25(40): 27694-27717, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812236

ABSTRACT

Ferritin, the major iron storage protein in organisms, stores iron in the form of iron oxyhydroxide most likely involving phosphorous as a constituent, the mineral form of which is not well understood. Therefore, the question of how the ca. 2000 iron atoms in the ferritin core are magnetically coupled is still largely open. The ferritin core, with a diameter of 5-8 nm, is encapsulated in a protein shell that also catalyzes the uptake of iron and protects the core from outside interactions. Neurodegenerative disease is associated with iron imbalance, generating specific interest in the magnetic properties of ferritin. Here we present 9 GHz continuous wave EPR and a comprehensive set of magnetometry techniques including isothermal remanent magnetization (IRM) and AC susceptibility to elucidate the magnetic properties of the core of human liver ferritin. For the analysis of the magnetometry data, a new microscopic model of the ferritin-core spin structure is derived, showing that magnetic moment is generated by surface-spin canting, rather than defects. The analysis explicitly includes the distribution of magnetic parameters, such as the distribution of the magnetic moment. This microscopic model explains some of the inconsistencies resulting from previous analysis approaches. The main findings are a mean magnetic moment of 337µB with a standard deviation of 0.947µB. In contrast to previous reports, only a relatively small contribution of paramagnetic and ferrimagnetic phases is found, in the order of maximally 3%. For EPR, the over 30 mT wide signal of the ferritin core is analyzed using the model of the giant spin system [Fittipaldi et al., Phys. Chem. Chem. Phys., 2016, 18, 3591-3597]. Two components are needed minimally, and the broadening of these components suggests a broad distribution of the magnetic resonance parameters, the zero-field splitting, D, and the spin quantum number, S. We compare parameters from EPR and magnetometry and find that EPR is particularly sensitive to the surface spins of the core, revealing the potential to use EPR as a diagnostic for surface-spin disorder.


Subject(s)
Ferritins , Neurodegenerative Diseases , Humans , Ferritins/chemistry , Electron Spin Resonance Spectroscopy/methods , Iron/chemistry , Magnetometry , Liver/metabolism
9.
ACS Appl Nano Mater ; 6(15): 13935-13944, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588262

ABSTRACT

Atomically precise graphene nanoribbons (GNRs) are predicted to exhibit exceptional edge-related properties, such as localized edge states, spin polarization, and half-metallicity. However, the absence of low-resistance nanoscale electrical contacts to the GNRs hinders harnessing their properties in field-effect transistors. In this paper, we make electrical contact with nine-atom-wide armchair GNRs using superconducting alloy MoRe as well as Pd (as a reference), which are two of the metals providing low-resistance contacts to carbon nanotubes. We take a step toward contacting a single GNR by fabricating electrodes with needlelike geometry, with about 20 nm tip diameter and 10 nm separation. To preserve the nanoscale geometry of the contacts, we develop a PMMA-assisted technique to transfer the GNRs onto the prepatterned electrodes. Our device characterizations as a function of bias voltage and temperature show thermally activated gate-tunable conductance in GNR-MoRe-based transistors.

10.
Nano Lett ; 23(15): 6973-6978, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37466285

ABSTRACT

Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic order, which is difficult to achieve with external magnets, especially when dealing with antiferromagnets. Here, we optothermally modulate the magnetization in antiferromagnetic 2D material membranes of metal phosphor trisulfides (MPS3), to induce a large high-frequency magnetostrictive driving force. From the analysis of the temperature-dependent resonance amplitude, we provide evidence that the force is due to a thermo-magnetostrictive effect, which significantly increases near the Neél temperature, due to the strong temperature dependence of the magnetization. By studying its angle dependence, we find the effect is observed to follow anisotropic magnetostriction of the crystal lattice. The results show that the thermo-magnetostrictive effect results in a strongly enhanced thermal expansion force near the critical temperature of magnetostrictive 2D materials, which can enable more efficient actuation of nano-magnetomechanical devices and can also provide a route for studying the high-frequency coupling among magnetic, mechanical, and thermodynamic degrees of freedom down to the 2D limit.

11.
Nano Lett ; 23(12): 5453-5459, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37289250

ABSTRACT

We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clear peaks with comparable amplitudes and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular, and transport is phase coherent. The temperature dependence of the focusing signal shows that, despite the small gate-induced bandgaps in our sample (≲45 meV), several peaks are visible up to 100 K. The achievement of specular reflection, which is expected to preserve the pseudospin information of the electron jets, is promising for the realization of ballistic interconnects for new valleytronic devices.

12.
Phys Rev Lett ; 130(7): 076702, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867817

ABSTRACT

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin dynamics are lacking. Here, we consider experimentally the relative merits of electronic and vibrational excitations for the optical control of zero orbital angular momentum magnets, focusing on a limit case: the antiferromagnet manganese phosphorous trisulfide (MnPS_{3}), constituted by orbital singlet Mn^{2+} ions. We study the correlation of spins with two types of excitations within its band gap: a bound electron orbital excitation from the singlet orbital ground state of Mn^{2+} into an orbital triplet state, which causes coherent spin precession, and a vibrational excitation of the crystal field that causes thermal spin disorder. Our findings cast orbital transitions as key targets for magnetic control in insulators constituted by magnetic centers of zero orbital angular momentum.

13.
Nanoscale ; 15(13): 6343-6352, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36916300

ABSTRACT

Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications. We address performance parameters relevant for acoustic sensing, including mechanical sensitivity, limit of detection and nonlinear distortion, and discuss the trade-offs and limitations in the design of graphene microphones. We demonstrate superior mechanical sensitivities of the graphene membranes, reaching more than 2 orders of magnitude higher compliances than commercial MEMS devices, and report a limit of detection as low as 15 dBSPL, which is 10-15 dB lower than that featured by current MEMS microphones.

14.
Nano Lett ; 22(20): 8086-8092, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36206381

ABSTRACT

Polycyclic aromatic hydrocarbons radicals are organic molecules with a nonzero total magnetic moment. Here, we report on charge-transport experiments with bianthracene-based radicals using a mechanically controlled break junction technique at low temperatures (6 K). The conductance spectra demonstrate that the magnetism of the diradical is preserved in solid-state devices and that it manifests itself either in the form of a Kondo resonance or inelastic electron tunneling spectroscopy signature caused by spin-flip processes. The magnetic fingerprints depend on the exact configuration of the molecule in the junction; this picture is supported by reference measurements on a radical molecule with the same backbone but with one free spin, in which only Kondo anomalies are observed. The results show that the open-shell structures based on the bianthracene core are interesting systems to study spin-spin interactions in solid-state devices, and this may open the way to control them either electrically or by mechanical strain.

15.
Adv Mater ; 34(44): e2204630, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36039705

ABSTRACT

Suspended piezoelectric thin films are key elements enabling high-frequency filtering in telecommunication devices. To meet the requirements of next-generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high-quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free-standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q-factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next-generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect.

16.
Chem Sci ; 13(27): 8017-8024, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35919422

ABSTRACT

Intra- and intermolecular interactions are dominating chemical processes, and their concerted interplay enables complex nonequilibrium states like life. While the responsible basic forces are typically investigated spectroscopically, a conductance measurement to probe and control these interactions in a single molecule far out of equilibrium is reported here. Specifically, by separating macroscopic metal electrodes, two π-conjugated, bridge-connected porphyrin decks are peeled off on one side, but compressed on the other side due to the covalent mechanical fixation. We observe that the conductance response shows an exceptional exponential rise by two orders of magnitude in individual breaking events during the stretching. Theoretical studies atomistically explain the measured conductance behavior by a mechanically activated increase in through-bond transport and a simultaneous strengthening of through-space coupling. Our results not only reveal the various interacting intramolecular transport channels in a molecular set of levers, but also the molecules' potential to serve as molecular electro-mechanical sensors and switches.

17.
Biomolecules ; 12(5)2022 05 15.
Article in English | MEDLINE | ID: mdl-35625632

ABSTRACT

We report on the fabrication of single-electron devices based on horse-spleen ferritin particles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of reproducible data that establishes the Coulomb blockade as the main transport mechanism through them. Excellent agreement between the experimental data and the Coulomb blockade theory is demonstrated. Single-electron charge transport in ferritin, thus, establishes a route for further characterization of their, e.g., magnetic, properties down to the single-particle level, with prospects for electronic and medical applications.


Subject(s)
Electrons , Ferritins , Animals , Horses , Spleen
18.
ACS Omega ; 7(16): 13654-13666, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35559184

ABSTRACT

Spin-crossover (SCO) active iron(II) complexes are an integral class of switchable and bistable molecular materials. Spin-state switching properties of the SCO complexes have been studied in the bulk and single-molecule levels to progress toward fabricating molecule-based switching and memory elements. Supramolecular SCO complexes featuring anchoring groups for metallic electrodes, for example, gold (Au), are ideal candidates to study spin-state switching at the single-molecule level. In this study, we report on the spin-state switching characteristics of supramolecular iron(II) complexes 1 and 2 composed of functional 4-([2,2'-bithiophen]-5-ylethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L1) and 4-(2-(5-(5-hexylthiophen-2-yl)thiophen-2-yl)ethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L2) ligands, respectively. Density functional theory (DFT) studies revealed stretching-induced spin-state switching in a molecular junction composed of complex 1, taken as a representative example, and gold electrodes. Single-molecule conductance traces revealed the unfavorable orientation of the complexes in the junctions to demonstrate the spin-state dependence of the conductance.

19.
Phys Rev Lett ; 128(14): 147701, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35476482

ABSTRACT

Probing the universal low-temperature magnetic-field scaling of Kondo-correlated quantum dots via electrical conductance has proved to be experimentally challenging. Here, we show how to probe this in nonlinear thermocurrent spectroscopy applied to a molecular quantum dot in the Kondo regime. Our results demonstrate that the bias-dependent thermocurrent is a sensitive probe of universal Kondo physics, directly measures the splitting of the Kondo resonance in a magnetic field, and opens up possibilities for investigating nanosystems far from thermal and electrical equilibrium.

20.
Nano Lett ; 22(4): 1475-1482, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35119289

ABSTRACT

Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity beneath to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nanomechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. Picosecond ultrasonics measurements confirm the improvement in the adhesion by 70% after annealing.

SELECTION OF CITATIONS
SEARCH DETAIL