Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6632): 586-591, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36758070

ABSTRACT

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Subject(s)
Alphainfluenzavirus , Antiviral Agents , Betainfluenzavirus , Biological Products , Enzyme Inhibitors , Methyltransferases , RNA Caps , Tubercidin , Virus Replication , Animals , Humans , Mice , RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/biosynthesis , Virus Replication/drug effects , Alphainfluenzavirus/drug effects , Betainfluenzavirus/drug effects , Biological Products/chemistry , Biological Products/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Tubercidin/analogs & derivatives , Tubercidin/pharmacology , Methyltransferases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Streptomyces/chemistry , Computer Simulation , A549 Cells
2.
J Exp Med ; 220(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36315050

ABSTRACT

Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.


Subject(s)
Inflammasomes , Virus Diseases , p38 Mitogen-Activated Protein Kinases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Inflammasomes/metabolism , NLR Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
EMBO J ; 41(17): e111608, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35833542

ABSTRACT

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Inflammation/drug therapy , Methyltransferases/metabolism , Mice , RNA Caps/metabolism , RNA, Viral/genetics , Ribose , Viral Nonstructural Proteins/genetics
4.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35215941

ABSTRACT

Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1--4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Flavivirus/immunology , High-Throughput Screening Assays/methods , Cross Reactions , Flavivirus/classification , Flavivirus/genetics , Flavivirus/physiology , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Neutralization Tests , Replicon , Sindbis Virus/genetics , Sindbis Virus/immunology , Sindbis Virus/physiology , Virion/genetics , Virion/immunology , Virion/physiology , Yellow fever virus/genetics , Yellow fever virus/immunology , Yellow fever virus/physiology
5.
Viruses ; 13(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806267

ABSTRACT

Using reverse genetics, we analyzed a chikungunya virus (CHIKV) isolate of the Indian Ocean lineage lacking direct repeat (DR) elements in the 3' untranslated region, namely DR1a and DR2a. While this deletion mutant CHIKV-∆DR exhibited growth characteristics comparable to the wild-type virus in Baby Hamster Kidney cells, replication of the mutant was reduced in Aedes albopictus C6/36 and Ae. aegypti Aag2 cells. Using oral and intrathoracic infection of mosquitoes, viral infectivity, dissemination, and transmission of CHIKV-∆DR could be shown for the well-known CHIKV vectors Ae. aegypti and Ae. albopictus. Oral infection of Ae. vexans and Culex pipiens mosquitoes with mutant or wild-type CHIKV showed very limited infectivity. Dissemination, transmission, and transmission efficiencies as determined via viral RNA in the saliva were slightly higher in Ae. vexans for the wild-type virus than for CHIKV-∆DR. However, both Ae. vexans and Cx. pipiens allowed efficient viral replication after intrathoracic injection confirming that the midgut barrier is an important determinant for the compromised infectivity after oral infection. Transmission efficiencies were neither significantly different between Ae. vexans and Cx. pipiens nor between wild-type and CHIKV-∆DR. With a combined transmission efficiency of 6%, both Ae. vexans and Cx. pipiens might serve as potential vectors in temperate regions.


Subject(s)
Aedes/virology , Chikungunya Fever/virology , Chikungunya virus/genetics , Culex/virology , Mosquito Vectors/virology , 3' Untranslated Regions , Animals , Chlorocebus aethiops , Cricetinae , Genes, Viral , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...