Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 123(12): 1531-1541, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38698644

ABSTRACT

The emergence of phase separation phenomena among macromolecules has identified biomolecular condensates as fundamental cellular organizers. These condensates concentrate specific components and accelerate biochemical reactions without relying on membrane boundaries. Although extensive studies have revealed a large variety of nuclear and cytosolic membraneless organelles, we are witnessing a surge in the exploration of protein condensates associated with the membranes of the secretory pathway, such as the endoplasmic reticulum and the Golgi apparatus. This review focuses on protein condensates in the secretory pathway and discusses their impact on the organization and functions of this cellular process. Moreover, we explore the modes of condensate-membrane association and the biophysical and cellular consequences of protein condensate interactions with secretory pathway membranes.


Subject(s)
Secretory Pathway , Humans , Animals , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Golgi Apparatus/metabolism , Biophysical Phenomena , Endoplasmic Reticulum/metabolism
2.
Mol Biol Cell ; 35(4): ar50, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38294859

ABSTRACT

Ca2+ influx into the trans-Golgi Network (TGN) promotes secretory cargo sorting by the Ca2+-ATPase SPCA1 and the luminal Ca2+ binding protein Cab45. Cab45 oligomerizes upon local Ca2+ influx, and Cab45 oligomers sequester and separate soluble secretory cargo from the bulk flow of proteins in the TGN. However, how this Ca2+ flux into the lumen of the TGN is achieved remains mysterious, as the cytosol has a nanomolar steady-state Ca2+ concentration. The TGN forms membrane contact sites (MCS) with the Endoplasmic Reticulum (ER), allowing protein-mediated exchange of molecular species such as lipids. Here, we show that the TGN export of secretory proteins requires the integrity of ER-TGN MCS and inositol 3 phosphate receptor (IP3R)-dependent Ca2+ fluxes in the MCS, suggesting Ca2+ transfer between these organelles. Using an MCS-targeted Ca2+ FRET sensor module, we measure the Ca2+ flow in these sites in real time. These data show that ER-TGN MCS facilitates the Ca2+ transfer required for Ca2+-dependent cargo sorting and export from the TGN, thus solving a fundamental question in cell biology.


Subject(s)
Calcium , trans-Golgi Network , Calcium/metabolism , trans-Golgi Network/metabolism , Biological Transport , Protein Transport , Endoplasmic Reticulum/metabolism , Proteins/metabolism , Carrier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL