Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Mol Pharmacol ; 104(6): 239-254, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37827578

ABSTRACT

Identification and development of effective therapeutics for coronavirus disease 2019 (COVID-19) are still urgently needed. The CD147-spike interaction is involved in the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 invasion process in addition to angiotensin-converting enzyme 2 (ACE2). Cyclophilin A (CyPA), the extracellular ligand of CD147, has been found to play a role in the infection and replication of coronaviruses. In this study, our results show that CyPA inhibitors such as cyclosporine A (CsA) and STG-175 can suppress the intracellular replication of SARS-CoV-2 by inhibiting the binding of CyPA to the SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD), and the IC50 is 0.23 µM and 0.17 µM, respectively. Due to high homology, CsA also had inhibitory effects on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), and the IC50 is 3.2 µM and 2.8 µM, respectively. Finally, we generated a formulation of phosphatidylserine (PS)-liposome-CsA for pulmonary drug delivery. These findings provide a scientific basis for identifying CyPA as a potential drug target for the treatment of COVID-19 as well as for the development of broad-spectrum inhibitors for coronavirus via targeting CyPA. Highlights: 1) SARS-CoV-2 infects cells via the binding of its S protein and CD147; 2) binding of SARS-CoV-2 N protein and CyPA is essential for viral replication; 3) CD147 and CyPA are potential therapeutic targets for SARS-CoV-2; and 4) CsA is a potential therapeutic strategy by interrupting CD147/CyPA interactions. SIGNIFICANCE STATEMENT: New severe acute respiratory syndrome coronavirus (SARS-CoV)-2 variants and other pathogenic coronaviruses (CoVs) are continually emerging, and new broad-spectrum anti-CoV therapy is urgently needed. We found that binding sites of cyclophilin A/cyclosporin A (CyPA/CsA) overlap with CyPA/N-CTD (nucleocapsid C-terminal domain), which shows the potential to target CyPA during SARS-CoV-2 infection. Here, we provide new evidence for targeting CyPA in the treatment of coronavirus disease 2019 (COVID-19) as well as the potential of developing CyPA inhibitors for broad-spectrum inhibition of CoVs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cyclophilin A/metabolism , Cyclosporine/pharmacology , Cyclosporine/chemistry , Inflammation
3.
Front Cell Infect Microbiol ; 12: 958634, 2022.
Article in English | MEDLINE | ID: mdl-36211973

ABSTRACT

Rationale: Human coronaviruses (HCoVs) seriously affect human health by causing respiratory diseases ranging from common colds to severe acute respiratory diseases. Immunophilins, including peptidyl-prolyl isomerases of the FK506-binding protein (FKBP) and the cyclophilin family, are promising targets for pharmaceutical inhibition of coronavirus replication, but cell-type specific effects have not been elucidated. FKBPs and cyclophilins bind the immunosuppressive drugs FK506 and cyclosporine A (CsA), respectively. Methods: Primary human bronchial epithelial cells (phBECs) were treated with CsA, Alisporivir (ALV), FK506, and FK506-derived non-immunosuppressive analogs and infected with HCoV-229E. RNA and protein were assessed by RT-qPCR and immunoblot analysis. Treatment with the same compounds was performed in hepatoma cells (Huh-7.5) infected with HCoV-229E expressing Renilla luciferase (HCoV-229E-RLuc) and the kidney cell line HEK293 transfected with a SARS-CoV-1 replicon expressing Renilla luciferase (SARS-CoV-1-RLuc), followed by quantification of luminescence as a measure of viral replication. Results: Both CsA and ALV robustly inhibited viral replication in all models; both compounds decreased HCoV-229E RNA in phBECs and reduced luminescence in HCoV-229E-RLuc-infected Huh7.5 and SARS-CoV-1-RLuc replicon-transfected HEK293. In contrast, FK506 showed inconsistent and less pronounced effects in phBECs while strongly affecting coronavirus replication in Huh-7.5 and HEK293. Two non-immunosuppressive FK506 analogs had no antiviral effect in any infection model. Conclusion: The immunophilin inhibitors CsA and ALV display robust anti-coronaviral properties in multiple infection models, including phBECs, reflecting a primary site of HCoV infection. In contrast, FK506 displayed cell-type specific effects, strongly affecting CoV replication in Huh7.5 and HEK293, but inconsistently and less pronounced in phBECs.


Subject(s)
Coronavirus 229E, Human , Coronavirus Infections , Coronavirus , Coronavirus/genetics , Coronavirus 229E, Human/genetics , Coronavirus Infections/genetics , Cyclophilins , Cyclosporine/chemistry , Cyclosporine/pharmacology , Cyclosporine/therapeutic use , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Luciferases, Renilla , Pharmaceutical Preparations , RNA , Tacrolimus/chemistry , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , Tacrolimus Binding Proteins/pharmacology , Tacrolimus Binding Proteins/therapeutic use
4.
Blood ; 139(23): 3402-3417, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35303071

ABSTRACT

Neutrophils are key players during host defense and sterile inflammation. Neutrophil dysfunction is a characteristic feature of the acquired immunodeficiency during kidney disease. We speculated that the impaired renal clearance of the intrinsic purine metabolite soluble uric acid (sUA) may account for neutrophil dysfunction. Indeed, hyperuricemia (HU, serum UA of 9-12 mg/dL) related or unrelated to kidney dysfunction significantly diminished neutrophil adhesion and extravasation in mice with crystal- and coronavirus-related sterile inflammation using intravital microscopy and an air pouch model. This impaired neutrophil recruitment was partially reversible by depleting UA with rasburicase. We validated these findings in vitro using either neutrophils or serum from patients with kidney dysfunction-related HU with or without UA depletion, which partially normalized the defective migration of neutrophils. Mechanistically, sUA impaired ß2 integrin activity and internalization/recycling by regulating intracellular pH and cytoskeletal dynamics, physiological processes that are known to alter the migratory and phagocytic capability of neutrophils. This effect was fully reversible by blocking intracellular uptake of sUA via urate transporters. In contrast, sUA had no effect on neutrophil extracellular trap formation in neutrophils from healthy subjects or patients with kidney dysfunction. Our results identify an unexpected immunoregulatory role of the intrinsic purine metabolite sUA, which contrasts the well-known immunostimulatory effects of crystalline UA. Specifically targeting UA may help to overcome certain forms of immunodeficiency, for example in kidney dysfunction, but may enhance sterile forms of inflammation.


Subject(s)
CD18 Antigens , Uric Acid , Animals , CD18 Antigens/metabolism , Humans , Immunity, Innate , Inflammation , Mice , Neutrophil Infiltration , Neutrophils , Uric Acid/pharmacology , Uric Acid/urine
5.
PLoS Biol ; 19(12): e3001490, 2021 12.
Article in English | MEDLINE | ID: mdl-34962926

ABSTRACT

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Subject(s)
Autophagy/genetics , CRISPR-Cas Systems , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication
6.
Front Med (Lausanne) ; 8: 749588, 2021.
Article in English | MEDLINE | ID: mdl-34869443

ABSTRACT

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

7.
EMBO J ; 40(11): e102277, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33876849

ABSTRACT

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Gene Expression Regulation, Viral , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins , Chromatography, Gel , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Genes, Reporter , HEK293 Cells , Humans , Immunoprecipitation , Luminescent Proteins , Models, Molecular , Peptide Initiation Factors/chemistry , Protein Binding , Protein Biosynthesis , Protein Conformation , Protein Domains , Protein Interaction Mapping , RNA, Viral/genetics , RNA-Binding Proteins/chemistry , RNA-Dependent RNA Polymerase/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Ribosome Subunits/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Scattering, Small Angle , Sequence Alignment , Sequence Homology, Amino Acid , Viral Nonstructural Proteins/chemistry , X-Ray Diffraction
8.
Am J Transplant ; 20(11): 2975-2982, 2020 11.
Article in English | MEDLINE | ID: mdl-32777170

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is declared a global health emergency. COVID-19 is triggered by a novel coronavirus: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Baseline characteristics of admitted patients with COVID-19 show that adiposity, diabetes, and hypertension are risk factors for developing severe disease, but so far immunosuppressed patients who are listed as high-risk patients have not been more susceptible to severe COVID-19 than the rest of the population. Multiple clinical trials are currently being conducted, which may identify more drugs that can lower mortality, morbidity, and burden on the society. Several independent studies have convincingly shown that cyclosporine inhibit replication of several different coronaviruses in vitro. The cyclosporine-analog alisporivir has recently been shown to inhibit SARS-CoV-2 in vitro. These findings are intriguing, although there is no clinical evidence for a protective effect to reduce the likelihood of severe COVID-19 or to treat the immune storm or acute respiratory distress syndrome (ARDS) that often causes severe morbidity. Here, we review the putative link between COVID-19 and cyclosporine, while we await more robust clinical data.


Subject(s)
COVID-19 Drug Treatment , Cyclosporine/therapeutic use , Immunocompromised Host , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/immunology , Humans , Immunosuppressive Agents/therapeutic use
9.
Med Drug Discov ; 7: 100056, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32835213

ABSTRACT

The outbreak of pneumonia caused by a new coronavirus (SARS-CoV-2) occurred in December 2019, and spread rapidly throughout the world. There have been other severe coronavirus outbreaks worldwide, namely, severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS-CoV). Because the genetic diversity of coronaviruses renders the design of vaccines complicated, broad spectrum-anti-coronavirus drugs have become a critical approach to control the coronavirus epidemic. Cyclophilin A is an important protein needed for coronavirus replication, and its inhibitor cyclosporine A has the ability to suppress coronavirus on a broad spectrum. CD147-S protein was found to be one route by which SARS-CoV-2 invades host cells, while CD147 was found to play a functional role in facilitating the infection of host cells by SARS-CoV. The CyPA/CD147 interaction may play a critical role in the ability of the SARS-CoV-2 virus to enter the host cells. However, cyclosporine A has immunosuppressive effects, so the conditions for its use as an antiviral drug are limited. As a result, cyclosporine A analogues without immunosuppressive side effects have attracted lots of interest. This review primarily discusses the drug development prospects of cyclophilin A as a therapeutic target for the treatment of coronavirus infection, especially coronavirus disease 2019 (COVID-19), and non-immunosuppressive cyclosporine analogues.

11.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32045235

ABSTRACT

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Enterovirus/drug effects , Lactams/pharmacology , Peptidomimetics/pharmacology , Virus Replication/drug effects , 3C Viral Proteases , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus/enzymology , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enterovirus/enzymology , Humans , Lactams/chemical synthesis , Lactams/metabolism , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism
12.
Mol Biomed ; 1(1): 2, 2020.
Article in English | MEDLINE | ID: mdl-34765991

ABSTRACT

The newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global human health crisis. The CoV nucleocapsid (N) protein plays essential roles both in the viral genomic RNA packaging and the regulation of host cellular machinery. Here, to contribute to the structural information of the N protein, we describe the 2.0 Å crystal structure of the SARS-CoV-2 N protein C-terminal domain (N-CTD). The structure indicates an extensive interaction dimer in a domain-swapped manner. The interface of this dimer was first thoroughly illustrated. Also, the SARS-CoV-2 N-CTD dimerization form was verified in solution using size-exclusion chromatography. Based on the structural comparison of the N-CTDs from alpha-, beta-, and gamma-CoVs, we demonstrate the common and specific characteristics of the SARS-CoV-2 N-CTD. Furthermore, we provide evidence that the SARS-CoV-2 N-CTD possesses the binding ability to single-stranded RNA, single-stranded DNA as well as double-stranded DNA in vitro. In conclusion, this study could potentially accelerate research to understand the complete biological functions of the new CoV N protein.

13.
Antiviral Res ; 173: 104620, 2020 01.
Article in English | MEDLINE | ID: mdl-31634494

ABSTRACT

The well-known immunosuppressive drug cyclosporin A inhibits replication of various viruses including coronaviruses by binding to cellular cyclophilins thus inactivating their cis-trans peptidyl-prolyl isomerase function. Viral nucleocapsid proteins are inevitable for genome encapsidation and replication. Here we demonstrate the interaction between the N protein of HCoV-229E and cyclophilin A, not cyclophilin B. Cyclophilin inhibitors abolish this interaction. Upon infection, cyclophilin A stays evenly distributed throughout the cell, whereas cyclophilin B concentrates at ER-bleb-like structures. We further show the inhibitory potential of non-immunosuppressive CsA derivatives Alisporivir, NIM811, compound 3 on HCoV-229E-GFP and -Luciferase replication in human Huh-7.5 hepatoma cells at 18 and 48 h time points post infection with EC50 s at low micromolar ranges. Thus, non-immunosuppressive CsA derivatives effectively inhibit HCoV-229E replication suggesting them as possible candidates for the treatment of HCoV infection. The interruption of interaction between CypA and N protein by CsA and its derivatives suggest a mechanism how CypA inhibitors suppress viral replication.


Subject(s)
Coronavirus 229E, Human/physiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cyclophilin A/metabolism , Cyclophilins/metabolism , Cyclosporine/pharmacology , Nucleocapsid Proteins/metabolism , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/genetics , Coronavirus Infections/genetics , Coronavirus Nucleocapsid Proteins , Cyclophilin A/genetics , Cyclophilins/genetics , Cyclosporine/chemistry , Host-Pathogen Interactions , Humans , Nucleocapsid Proteins/genetics , Protein Binding/drug effects , Virus Replication/drug effects
14.
Antiviral Res ; 162: 142-150, 2019 02.
Article in English | MEDLINE | ID: mdl-30597184

ABSTRACT

The Third Tofo Advanced Study Week on Emerging and Re-Emerging Viruses (3rd TASW) was held in Praia do Tofo, Mozambique, from September 02 to 06, 2018. It brought together 55 participants from 10 African countries as well as from Belgium, China, Germany, Singapore, and the USA. Meeting sessions covered aspects of the epidemiology, diagnosis, molecular and structural biology, vaccine development, and antiviral drug discovery for emerging RNA viruses that are current threats in Africa and included flaviviruses (dengue and Zika), alphaviruses (chikungunya), coronaviruses, filoviruses (Ebola), influenza viruses, Crimean Congo hemorrhagic fever virus, Rift Valley fever Virus, Lassa virus, and others. Data were presented on recent flavivirus and/or chikungunyavirus outbreaks in Angola, Burkina Faso, and Mozambique. In addition, these viruses are endemic in many sub-Saharan countries. The TASW series on emerging viruses is unique in Africa and successful in promoting collaborations between researchers in Africa and other parts of the world, as well as among African scientists. This report summarizes the lectures held at the meeting and highlights advances in the field.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/pathogenicity , Animals , Chikungunya Fever , Congresses as Topic , Disease Outbreaks , Flavivirus/pathogenicity , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Ebola , Humans , Mozambique , Zika Virus/pathogenicity
15.
Proc Natl Acad Sci U S A ; 113(35): E5192-201, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27519799

ABSTRACT

Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.


Subject(s)
Cysteine Endopeptidases/metabolism , Severe Acute Respiratory Syndrome/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Binding Sites/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Down-Regulation , Host-Pathogen Interactions , Humans , Protein Binding , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Virus Replication/genetics
16.
Virology ; 497: 185-197, 2016 10.
Article in English | MEDLINE | ID: mdl-27479465

ABSTRACT

Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell ß-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles.


Subject(s)
Coronaviridae Infections/metabolism , Coronaviridae Infections/virology , Coronaviridae/physiology , Spike Glycoprotein, Coronavirus/metabolism , Tubulin/metabolism , Virus Assembly , Virus Replication , Animals , Cell Line , Coronaviridae/drug effects , Gastroenteritis, Transmissible, of Swine/metabolism , Gastroenteritis, Transmissible, of Swine/virology , Humans , Intracellular Space/metabolism , Intracellular Space/virology , Nocodazole/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Spike Glycoprotein, Coronavirus/chemistry , Swine , Virus Assembly/drug effects , Virus Release , Virus Replication/drug effects
18.
Curr Opin Virol ; 14: 56-61, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26318518

ABSTRACT

Replication of coronaviruses is inhibited in vitro by cyclosporin A, a well-known immunosuppressive drug which binds to cellular cyclophilins thus inactivating their enzymatic cis-trans peptidyl-prolyl isomerase function. Latter is required for proper folding of cellular proteins and of proteins of several viruses. Here, we summarize present knowledge on the role of cyclophilin A during coronavirus replication. We present data on the effect of cyclophilin A single nucleotide polymorphism mutants on the replication of human CoV-229E demonstrating the requirement of proper cyclophilin A function for virus propagation. Results define cellular cyclophilin A as a host target for inhibition of coronaviruses ranging from relatively mild common cold to highly pathogenic SARS-CoV and MERS-CoV viruses with the perspective of disclosing non-immunosuppressive cyclosporin A analogs to broadly inactivate the coronavirus family.


Subject(s)
Coronavirus 229E, Human/physiology , Cyclophilin A/deficiency , Cyclophilin A/genetics , Host-Pathogen Interactions , Virus Replication , Cyclophilin A/metabolism , Humans , Polymorphism, Single Nucleotide
19.
Virus Res ; 184: 44-53, 2014 May 12.
Article in English | MEDLINE | ID: mdl-24566223

ABSTRACT

Until recently, there were no effective drugs available blocking coronavirus (CoV) infection in humans and animals. We have shown before that CsA and FK506 inhibit coronavirus replication (Carbajo-Lozoya, J., Müller, M.A., Kallies, S., Thiel, V., Drosten, C., von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012; Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C., Müller, M.A., Stellberger, T., von Dall'Armi, E., Herzog, P., Kallies, S., Niemeyer, D., Ditt, V., Kuri, T., Züst, R., Schwarz, F., Zimmer, R., Steffen, I., Weber, F., Thiel, V., Herrler, G., Thiel, H.-J., Schwegmann-Weßels, C., Pöhlmann, S., Haas, J., Drosten, C. and von Brunn, A. The SARS-Coronavirus-host interactome: identification of cyclophilins as target for pan-Coronavirus inhibitors. PLoS Pathog., 2011). Here we demonstrate that CsD Alisporivir, NIM811 as well as novel non-immunosuppressive derivatives of CsA and FK506 strongly inhibit the growth of human coronavirus HCoV-NL63 at low micromolar, non-cytotoxic concentrations in cell culture. We show by qPCR analysis that virus replication is diminished up to four orders of magnitude to background levels. Knockdown of the cellular Cyclophilin A (CypA/PPIA) gene in Caco-2 cells prevents replication of HCoV-NL63, suggesting that CypA is required for virus replication. Collectively, our results uncover Cyclophilin A as a host target for CoV infection and provide new strategies for urgently needed therapeutic approaches.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus NL63, Human/drug effects , Coronavirus NL63, Human/physiology , Cyclophilin A/metabolism , Cyclosporine/pharmacology , Virus Replication/drug effects , Caco-2 Cells , Humans , Real-Time Polymerase Chain Reaction , Tacrolimus/pharmacology
20.
J Virol ; 87(12): 6943-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23596286

ABSTRACT

Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis.


Subject(s)
Antibodies, Monoclonal/immunology , Herpesvirus 3, Human/metabolism , Viral Proteins/immunology , Viral Proteins/metabolism , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Chickenpox/virology , Epithelial Cells/virology , Fluorescent Antibody Technique, Indirect , Herpes Zoster/virology , Herpesvirus 3, Human/immunology , Humans , Mice , Mice, Inbred BALB C , Proteomics , Skin/immunology , Skin/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...