Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702730

ABSTRACT

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Subject(s)
Mammary Glands, Animal , Repressor Proteins , Serum Response Factor , Stem Cells , Transcription Factors , Animals , Female , Mice , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Humans , Trans-Activators/metabolism , Trans-Activators/genetics
2.
Nat Commun ; 15(1): 3074, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594255

ABSTRACT

Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Male , Animals , Mice , DNA Methylation/genetics , Aging/genetics , Longevity , Chromatin
3.
NPJ Regen Med ; 9(1): 10, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424446

ABSTRACT

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

4.
Oncogene ; 43(8): 578-593, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182898

ABSTRACT

YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins
5.
Mol Cancer ; 22(1): 196, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049829

ABSTRACT

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Humans , Mice , Animals , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation , Gene Expression
6.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37452493

ABSTRACT

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Subject(s)
MicroRNAs , Rhabdomyosarcoma, Embryonal , Humans , Child , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Myogenin/genetics , Myogenin/metabolism , Cell Differentiation/genetics , MicroRNAs/genetics , Muscle Development/genetics , Cell Line, Tumor , Repressor Proteins
7.
Leukemia ; 37(4): 741-750, 2023 04.
Article in English | MEDLINE | ID: mdl-36739348

ABSTRACT

Murine models offer a valuable tool to recapitulate genetically defined subtypes of AML, and to assess the potential of compound mutations and clonal evolution during disease progression. This is of particular importance for difficult to treat leukemias such as FLT3 internal tandem duplication (ITD) positive AML. While conditional gene targeting by Cre recombinase is a powerful technology that has revolutionized biomedical research, consequences of Cre expression such as lack of fidelity, toxicity or off-target effects need to be taken into consideration. We report on a transgenic murine model of FLT3-ITD induced disease, where Cre recombinase expression alone, and in the absence of a conditional allele, gives rise to an aggressive leukemia phenotype. Here, expression of various Cre recombinases leads to polyclonal expansion of FLT3ITD/ITD progenitor cells, induction of a differentiation block and activation of Myc-dependent gene expression programs. Our report is intended to alert the scientific community of potential risks associated with using this specific mouse model and of unexpected effects of Cre expression when investigating cooperative oncogenic mutations in murine models of cancer.


Subject(s)
Leukemia, Myeloid, Acute , Animals , Mice , Disease Models, Animal , fms-Like Tyrosine Kinase 3/genetics , Gene Duplication , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Transgenic , Mutation
8.
Nat Commun ; 13(1): 5187, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057685

ABSTRACT

Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)-the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline. We identify Clca3a1 as a TAZ-induced gene that allows us to trace TAZ activity in vivo. Using CLCA3A1 as a marker, we can isolate "young-like" HSCs from old mice. Mechanistically, Taz acts as coactivator of PU.1 and to some extent counteracts the gradual loss of PU.1 expression during HSC aging. Our work thus uncovers an essential role for Taz in a previously undescribed fail-safe mechanism in aging HSCs.


Subject(s)
Aging , Hematopoietic Stem Cells , Aging/physiology , Animals , Hematopoietic Stem Cells/metabolism , Mice
9.
Blood ; 139(7): 1080-1097, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34695195

ABSTRACT

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Oncogene Proteins, Fusion/metabolism , Phospholipase C gamma/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Animals , Cell Self Renewal , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Neoplastic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Phospholipase C gamma/genetics , Proteome , RUNX1 Translocation Partner 1 Protein/genetics , Transcriptome , Translocation, Genetic
10.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34039707

ABSTRACT

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Subject(s)
Cell Cycle Proteins/physiology , Histone-Lysine N-Methyltransferase/physiology , Myeloid-Lymphoid Leukemia Protein/physiology , Receptors, Notch/metabolism , Signal Transduction , Transcription Factors/physiology , Tumor Suppressor Protein p53/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Mutation , Organoids/metabolism , Transcription Factors/metabolism
11.
Blood ; 138(6): 439-451, 2021 08 12.
Article in English | MEDLINE | ID: mdl-33876187

ABSTRACT

We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using 2 independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp (P-selectin), the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics or deletion of Dnmt3a/b molecularly resembles HSC rejuvenation or aging, respectively.


Subject(s)
Cellular Senescence , Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Transcriptome , Animals , Hematopoietic Stem Cells/cytology , Mice , Mice, Transgenic
12.
Mech Ageing Dev ; 189: 111280, 2020 07.
Article in English | MEDLINE | ID: mdl-32512018

ABSTRACT

The two transcriptional coactivators YAP/TAZ act as the downstream transducers of the Hippo pathway. Recent studies have demonstrated that those two transcriptional regulators are crucial for an organism in order to induce a regenerative response upon tissue damage. In addition, YAP/TAZ are promising targets for regenerative medicine, as artificially increasing YAP/TAZ activity can be used to stimulate tissue regeneration, even in tissues that otherwise have little ability to regenerate. We will summarize here how YAP/TAZ could be used in regenerative medicine and how these two transcriptional regulators have been linked to aging so far.


Subject(s)
Aging/metabolism , Protein Serine-Threonine Kinases/metabolism , Regeneration , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
13.
Cell Rep ; 27(12): 3533-3546.e7, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31216474

ABSTRACT

YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma of Lung/pathology , Cell Cycle Proteins/metabolism , Cell Cycle , Chromatin/metabolism , Gene Expression Regulation , Mitosis/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Breast/cytology , Breast/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , Chromatin/genetics , Enhancer Elements, Genetic , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Prognosis , Promoter Regions, Genetic , Survival Rate , Trans-Activators/genetics , Transcription Factors/genetics , YAP-Signaling Proteins
14.
Cell Mol Life Sci ; 76(13): 2559-2570, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30976839

ABSTRACT

Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribution of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.


Subject(s)
Adult Stem Cells/cytology , Muscle Development , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Regeneration , Adult , Cell Differentiation , Humans
15.
Nat Commun ; 9(1): 3781, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30209298

ABSTRACT

In the original version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include the following: "This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001144), the UK Medical Research Council (FC001144), and the Wellcome Trust (FC001144)." https://doi.org/10.1038/s41467-018-05370-7 .

16.
Nat Commun ; 9(1): 3115, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082728

ABSTRACT

Yes-associated protein (YAP), the downstream transducer of the Hippo pathway, is a key regulator of organ size, differentiation and tumorigenesis. To uncover Hippo-independent YAP regulators, we performed a genome-wide CRISPR screen that identifies the transcriptional repressor protein Trichorhinophalangeal Syndrome 1 (TRPS1) as a potent repressor of YAP-dependent transactivation. We show that TRPS1 globally regulates YAP-dependent transcription by binding to a large set of joint genomic sites, mainly enhancers. TRPS1 represses YAP-dependent function by recruiting a spectrum of corepressor complexes to joint sites. Loss of TRPS1 leads to activation of enhancers due to increased H3K27 acetylation and an altered promoter-enhancer interaction landscape. TRPS1 is commonly amplified in breast cancer, which suggests that restrained YAP activity favours tumour growth. High TRPS1 activity is associated with decreased YAP activity and leads to decreased frequency of tumour-infiltrating immune cells. Our study uncovers TRPS1 as an epigenetic regulator of YAP activity in breast cancer.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Transcription Factors/metabolism , Acetylation , Animals , Binding Sites , Breast Neoplasms/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Chromatin/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Female , Genomics , HEK293 Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Promoter Regions, Genetic , RNA, Small Interfering/metabolism , Repressor Proteins , Tissue Array Analysis , Transcriptional Activation
17.
Proc Natl Acad Sci U S A ; 114(30): 8029-8034, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28698371

ABSTRACT

GAS2L3 is a recently identified cytoskeleton-associated protein that interacts with actin filaments and tubulin. The in vivo function of GAS2L3 in mammals remains unknown. Here, we show that mice deficient in GAS2L3 die shortly after birth because of heart failure. Mammalian cardiomyocytes lose the ability to proliferate shortly after birth, and further increase in cardiac mass is achieved by hypertrophy. The proliferation arrest of cardiomyocytes is accompanied by binucleation through incomplete cytokinesis. We observed that GAS2L3 deficiency leads to inhibition of cardiomyocyte proliferation and to cardiomyocyte hypertrophy during embryonic development. Cardiomyocyte-specific deletion of GAS2L3 confirmed that the phenotype results from the loss of GAS2L3 in cardiomyocytes. Cardiomyocytes from Gas2l3-deficient mice exhibit increased expression of a p53-transcriptional program including the cell cycle inhibitor p21. Furthermore, loss of GAS2L3 results in premature binucleation of cardiomyocytes accompanied by unresolved midbody structures. Together these results suggest that GAS2L3 plays a specific role in cardiomyocyte cytokinesis and proliferation during heart development.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cytokinesis , Cytoskeletal Proteins/physiology , Myocytes, Cardiac/physiology , Animals , Cardiomyopathy, Dilated/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytokinesis/genetics , Cytoskeletal Proteins/genetics , Fibrosis , Gene Deletion , Gene Expression Regulation , Mice , Mice, Knockout , Myocardium/pathology , Tumor Suppressor Protein p53/metabolism
18.
Elife ; 52016 07 27.
Article in English | MEDLINE | ID: mdl-27460974

ABSTRACT

Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells.


Subject(s)
DNA/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Cell Line , Chromatin Immunoprecipitation , Epithelial Cells/physiology , Gene Expression Profiling , Humans , Models, Theoretical , Protein Binding , Sequence Analysis, DNA , Sequence Analysis, RNA
19.
Cell Cycle ; 15(19): 2551-2556, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27433809

ABSTRACT

c-Myc (MYC) is an oncogenic transcription factor that is commonly overexpressed in a wide variety of human tumors. In breast cancer, MYC has recently been linked to the triple-negative subtype, a subtype that lacks any targeted therapy. Previously, we demonstrated that MYC behaves as a potent repressor of YAP and TAZ, 2 transcriptional coactivators that function as downstream transducers of the Hippo pathway. In this previous study, MYC repressed YAP/TAZ not only in primary breast epithelial cells but also in mouse models of triple-negative tumors. Here, we extend our previous bioinformatic and experimental analyses and demonstrate that MYC deregulation in primary breast epithelial cells leads to a robust repression of TEAD transcription factor activity, the transcription factor family mainly responsible for YAP/TAZ recruitment. Surprisingly, we find that MYC and TEAD activity is able to stratify different breast cancer subtypes in large panels of breast cancer patients. Thus, a deep understanding of the MYC-YAP/TAZ circuitry might yield new insights into the establishment and maintenance of specific breast cancer subtypes.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/metabolism , Female , Humans , Phosphoproteins/metabolism , TEA Domain Transcription Factors , YAP-Signaling Proteins
20.
Mol Cell ; 61(1): 54-67, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687678

ABSTRACT

MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.


Subject(s)
Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Elongation, Genetic , Tumor Suppressor Proteins/metabolism , Ubiquitination , Acetylation , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins , Cell Proliferation , Chromatin Assembly and Disassembly , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , Multiprotein Complexes , Mutation , Nuclear Proteins/genetics , Phosphoproteins/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , RNA Polymerase II/metabolism , Time Factors , Transcription Factors/metabolism , Transfection , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...