Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230106, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705194

ABSTRACT

Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Citizen Science , Insecta , Animals , Citizen Science/methods , Community Participation/methods , Environmental Monitoring/methods
2.
Sci Total Environ ; 922: 171183, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38408653

ABSTRACT

Agricultural pesticides, nutrients, and habitat degradation are major causes of insect declines in lowland streams. To effectively conserve and restore stream habitats, standardized stream monitoring data and societal support for freshwater protection are needed. Here, we sampled 137 small stream monitoring sites across Germany, 83 % of which were located in agricultural catchments, with >900 citizen scientists in 96 monitoring groups. Sampling was carried out according to Water Framework Directive standards as part of the citizen science freshwater monitoring program FLOW in spring and summer 2021, 2022 and 2023. The biological indicator SPEARpesticides was used to assess pesticide exposure and effects based on macroinvertebrate community composition. Overall, 58 % of the agricultural monitoring sites failed to achieve a good ecological status in terms of macroinvertebrate community composition and indicated high pesticide exposure (SPEARpesticides status class: 29 % "moderate", 19 % "poor", 11 % "bad"). The indicated pesticide pressure in streams was related to the proportion of arable land in the catchment areas (R2 = 0.23, p < 0.001). Also with regards to hydromorphology, monitoring results revealed that 65 % of the agricultural monitoring sites failed to reach a good status. The database produced by citizen science groups was characterized by a high degree of accuracy, as results obtained by citizen scientists and professionals were highly correlated for SPEARpesticides index (R2 = 0.79, p < 0.001) and hydromorphology index values (R2 = 0.72, p < 0.001). Such citizen-driven monitoring of the status of watercourses could play a crucial role in monitoring and implementing the objectives of the European Water Framework Directive, thus contributing to restoring and protecting freshwater ecosystems.


Subject(s)
Citizen Science , Pesticides , Water Pollutants, Chemical , Animals , Invertebrates , Ecosystem , Rivers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Pesticides/analysis , Germany , Water
3.
Sci Total Environ ; 857(Pt 3): 159607, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36273564

ABSTRACT

The majority of central European streams are in poor ecological condition. Pesticide inputs from terrestrial habitats present a key threat to sensitive insects in streams. Both standardized stream monitoring data and societal support are needed to conserve and restore freshwater habitats. Citizen science (CS) offers potential to complement international freshwater monitoring while it is often viewed critically due to concerns about data accuracy. Here, we developed a CS program based on the Water Framework Directive that enables citizen scientists to provide data on stream hydromorphology, physicochemical status and benthic macroinvertebrates to apply the trait-based bio-indicator SPEARpesticides for pesticide exposure. We compared CS monitoring data with professional data across 28 central German stream sites and could show that both CS and professional monitoring identified a similar average proportion of pesticide-sensitive macroinvertebrate taxa per stream site (20 %). CS data were highly correlated to the professional data for both stream hydromorphology and SPEARpesticides (r = 0.72 and 0.76). To assess the extent to which CS macroinvertebrate data can indicate pesticide exposure, we tested the relationship of CS generated SPEARpesticides values and measured pesticide concentrations at 21 stream sites, and found a fair correlation similar to professional results. We conclude that given appropriate training and support, citizen scientists can generate valid data on the ecological status and pesticide contamination of streams. By complementing official monitoring, data from well-managed CS programs can advance freshwater science and enhance the implementation of freshwater conservation goals.


Subject(s)
Citizen Science , Pesticides , Water Pollutants, Chemical , Animals , Rivers , Pesticides/analysis , Invertebrates , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Ecosystem
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1814): 20190461, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33131446

ABSTRACT

Climate change, overfishing, marine pollution and other anthropogenic drivers threaten our global oceans. More effective efforts are urgently required to improve the capacity of marine conservation action worldwide, as highlighted by the United Nations Decade of Ocean Science for Sustainable Development 2021-2030. Marine citizen science presents a promising avenue to enhance engagement in marine conservation around the globe. Building on an expanding field of citizen science research and practice, we present a global overview of the current extent and potential of marine citizen science and its contribution to marine conservation. Employing an online global survey, we explore the geographical distribution, type and format of 74 marine citizen science projects. By assessing how the projects adhere to the Ten Principles of Citizen Science (as defined by the European Citizen Science Association), we investigate project development, identify challenges and outline future opportunities to contribute to marine science and conservation. Synthesizing the survey results and drawing on evidence from case studies of diverse projects, we assess whether and how citizen science can lead to new scientific knowledge and enhanced environmental stewardship. Overall, we explore how marine citizen science can inform current understanding of marine biodiversity and support the development and implementation of marine conservation initiatives worldwide. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.


Subject(s)
Biodiversity , Citizen Science/statistics & numerical data , Conservation of Natural Resources/statistics & numerical data , Fisheries , Oceans and Seas , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...