Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 101: 104-111, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35988480

ABSTRACT

PURPOSE: The interplay between respiratory tumor motion and dose application by intensity modulated radiotherapy (IMRT) techniques can potentially lead to undesirable and non-intuitive deviations from the planned dose distribution. We developed a 4D Monte Carlo (MC) dose recalculation framework featuring statistical breathing curve sampling, to precisely simulate the dose distribution for moving target volumes aiming at a comprehensive assessment of interplay effects. METHODS: We implemented a dose accumulation tool that enables dose recalculations of arbitrary breathing curves including the actual breathing curve of the patient. This MC dose recalculation framework is based on linac log-files, facilitating a high temporal resolution up to 0.1 s. By statistical analysis of 128 different breathing curves, interplay susceptibility of different treatment parameters was evaluated for an exemplary patient case. To facilitate prospective clinical application in the treatment planning stage, in which patient breathing curves or linac log-files are not available, we derived a log-file free version with breathing curves generated by a random walk approach. Interplay was quantified by standard deviations σ in D5%, D50% and D95%. RESULTS: Interplay induced dose deviations for single fractions were observed and evaluated for IMRT and volumetric arc therapy (σD95% up to 1.3 %) showing a decrease with higher fraction doses and an increase with higher MU rates. Interplay effects for conformal treatment techniques were negligible (σ<0.1%). The log-file free version and the random walk generated breathing curves yielded similar results (deviations in σ< 0.1 %) and can be used as substitutes for interplay assessment. CONCLUSION: It is feasible to combine statistically sampled breathing curves with MC dose calculations. The universality of the presented framework allows comprehensive assessment of interplay effects in retrospective and prospective clinically relevant scenarios.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Monte Carlo Method , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiration , Retrospective Studies
2.
Med Phys ; 46(7): 3268-3277, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31074510

ABSTRACT

PURPOSE: The need for four-dimensional (4D) treatment planning becomes indispensable when it comes to radiation therapy for moving tumors in the thoracic and abdominal regions. The primary purpose of this study is to combine the actual breathing trace during each individual treatment fraction with the Linac's log file information and Monte Carlo 4D dose calculations. We investigated this workflow on multiple computed tomography (CT) datasets in a clinical environment for stereotactic body radiation therapy (SBRT) treatment planning. METHODS: We have developed a workflow, which allows us to recalculate absorbed dose to a 4DCT dataset using Monte Carlo calculation methods and accumulate all 4D doses in order to compare them to the planned dose using the Linac's log file, a 4DCT dataset, and the patient's actual breathing curve for each individual fraction. For five lung patients, three-dimensional-conformal radiation therapy (3D-CRT) and volumetric modulated arc treatment (VMAT) treatment plans were generated on four different CT image datasets: a native free-breathing 3DCT, an average intensity projection (AIP) and a maximum intensity projection (MIP) CT both obtained from a 4DCT, and a 3DCT with density overrides based on the 3DCT (DO). The Monte Carlo 4D dose has been calculated on each 4DCT phase using the Linac's log file and the patient's breathing trace as a surrogate for tumor motion and dose was accumulated to the gross tumor volume (GTV) at the 50% breathing phase (end of exhale) using deformable image registration. RESULTS: Δ D 98 % and Δ D 2 % between 4D dose and planned dose differed largely for 3DCT-based planning and also for DO in three patients. Least dose differences between planned and recalculated dose have been found for AIP and MIP treatment planning which both tend to be superior to DO, but the results indicate a dependency on the breathing variability, tumor motion, and size. An interplay effect has not been observed in the small patient cohort. CONCLUSIONS: We have developed a workflow which, to our best knowledge, is the first incorporation of the patient breathing trace over the course of all individual treatment fractions with the Linac's log file information and 4D Monte Carlo recalculations of the actual treated dose. Due to the small patient cohort, no clear recommendation on which CT can be used for SBRT treatment planning can be given, but the developed workflow, after adaption for clinical use, could be used to enhance a priori 4D Monte Carlo treatment planning in the future and help with the decision on which CT dataset treatment planning should be carried out.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms/radiotherapy , Monte Carlo Method , Radiation Dosage , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Adult , Aged , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Male , Middle Aged , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...