Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Bioprocess Biosyst Eng ; 47(6): 877-890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703202

ABSTRACT

Ultracentrifugation is an attractive method for separating full and empty capsids, exploiting their density difference. Changes of the serotype/capsid, density of loading material, or the genetic information contained in the adeno-associated viruses (AAVs) require the adaptation of the harvesting parameters and the density gradient loaded onto the centrifuge. To streamline these adaptations, a mathematical model could support the design and testing of operating conditions.Here, hybrid models, which combine empirical functions with artificial neural networks, are proposed to describe the separation of full and empty capsids as a function of material and operational parameters, i.e., the harvest model. In addition, critical quality attributes are estimated by a quality model which is operating on top of the harvest model. The performance of these models was evaluated using test data and two additional blind runs. Also, a "what-if" analysis was conducted to investigate whether the models' predictions align with expectations.It is concluded that the models are sufficiently accurate to support the design of operating conditions, though the accuracy and applicability of the models can further be increased by training them on more specific data with higher variability.


Subject(s)
Dependovirus , Ultracentrifugation , Dependovirus/genetics , Dependovirus/isolation & purification , Ultracentrifugation/methods , Virion/isolation & purification , Virion/chemistry , Neural Networks, Computer
2.
Biotechnol J ; 19(3): e2300473, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38528367

ABSTRACT

The use of hybrid models is extensively described in the literature to predict the process evolution in cell cultures. These models combine mechanistic and machine learning methods, allowing the prediction of complex process behavior, in the presence of many process variables, without the need to collect a large amount of data. Hybrid models cannot be directly used to predict final product critical quality attributes, or CQAs, because they are usually measured only at the end of the process, and more mechanistic knowledge is needed for many classes of CQAs. The historical models can instead predict the CQAs better; however, they cannot directly relate manipulated process parameters to final CQAs, as they require knowledge of the process evolution. In this work, we propose an innovative modeling approach based on combining a hybrid propagation model with a historical data-driven model, that is, the combined hybrid model, for simultaneous prediction of full process dynamics and CQAs. The performance of the combined hybrid model was evaluated on an industrial dataset and compared to classical black-box models, which directly relate manipulated process parameters to CQAs. The proposed combined hybrid model outperforms the black-box model by 33% on average in predicting the CQAs while requiring only around half of the data for model training to match performance. Thus, in terms of model accuracy and experimental costs, the combined hybrid model in this study provides a promising platform for process optimization applications.


Subject(s)
Cell Culture Techniques , Machine Learning
3.
Biotechnol Bioeng ; 121(4): 1271-1283, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258490

ABSTRACT

"Giving the cells exactly what they need, when they need it" is the core idea behind the proposed bioprocess control strategy: operating bioprocess based on the physiological behavior of the microbial population rather than exclusive monitoring of environmental parameters. We are envisioning to achieve this through the use of genetically encoded biosensors combined with online flow cytometry (FCM) to obtain a time-dependent "physiological fingerprint" of the population. We developed a biosensor based on the glnA promoter (glnAp) and applied it for monitoring the nitrogen-related nutritional state of Escherichia coli. The functionality of the biosensor was demonstrated through multiple cultivation runs performed at various scales-from microplate to 20 L bioreactor. We also developed a fully automated bioreactor-FCM interface for on-line monitoring of the microbial population. Finally, we validated the proposed strategy by performing a fed-batch experiment where the biosensor signal is used as the actuator for a nitrogen feeding feedback control. This new generation of process control, -based on the specific needs of the cells, -opens the possibility of improving process development on a short timescale and therewith, the robustness and performance of fermentation processes.


Subject(s)
Bioreactors , Biosensing Techniques , Fermentation , Escherichia coli , Nitrogen
4.
Biotechnol Bioeng ; 118(11): 4389-4401, 2021 11.
Article in English | MEDLINE | ID: mdl-34383309

ABSTRACT

To date, a large number of experiments are performed to develop a biochemical process. The generated data is used only once, to take decisions for development. Could we exploit data of already developed processes to make predictions for a novel process, we could significantly reduce the number of experiments needed. Processes for different products exhibit differences in behaviour, typically only a subset behave similar. Therefore, effective learning on multiple product spanning process data requires a sensible representation of the product identity. We propose to represent the product identity (a categorical feature) by embedding vectors that serve as input to a Gaussian process regression model. We demonstrate how the embedding vectors can be learned from process data and show that they capture an interpretable notion of product similarity. The improvement in performance is compared to traditional one-hot encoding on a simulated cross product learning task. All in all, the proposed method could render possible significant reductions in wet-lab experiments.


Subject(s)
Models, Biological , Animals , Cell Line , Humans
5.
Trends Biotechnol ; 39(11): 1120-1130, 2021 11.
Article in English | MEDLINE | ID: mdl-33707043

ABSTRACT

Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.


Subject(s)
Artificial Intelligence , Vaccines , Computer Simulation
6.
Adv Biochem Eng Biotechnol ; 176: 35-55, 2021.
Article in English | MEDLINE | ID: mdl-32797270

ABSTRACT

Digital twins (DTs) are expected to render process development and life-cycle management much more cost-effective and time-efficient. A DT definition, a brief retrospect on their history and expectations for their deployment in today's business environment, and a detailed financial assessment of their attractive economic benefits are provided in this chapter. The argument that restrictive guidelines set forth by regulatory agencies would hinder the adoption of DTs in the (bio)pharmaceutical industry is revisited, concluding that those companies who collaborate with the agencies to further their technical capabilities will gain significant competitive advantage. The analyzed process development examples show high methodological readiness levels but low systematic adoption of technology. Given the technical feasibilities, financial opportunities, and regulatory encouragement, concerns regarding intellectual property and data sharing, though required to be taken into account, will at best delay an industry-wide adoption of DTs. In conclusion, it is expected that a strategic investment in DTs now will gain an advantage over competition that will be difficult to overcome by late adopters.


Subject(s)
Biological Products , Computer Simulation , Drug Industry
7.
Chaos Solitons Fractals ; 138: 109937, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32834573

ABSTRACT

This work aims to model, simulate and provide insights into the dynamics and control of COVID-19 infection rates. Using an established epidemiological model augmented with a time-varying disease transmission rate allows daily model calibration using COVID-19 case data from countries around the world. This hybrid model provides predictive forecasts of the cumulative number of infected cases. It also reveals the dynamics associated with disease suppression, demonstrating the time to reduce the effective, time-dependent, reproduction number. Model simulations provide insights into the outcomes of disease suppression measures and the predicted duration of the pandemic. Visualisation of reported data provides up-to-date condition monitoring, while daily model calibration allows for a continued and updated forecast of the current state of the pandemic.

8.
Biotechnol J ; 15(10): e2000113, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32683769

ABSTRACT

In recent years, multivariate data analysis (MVDA) and modeling approaches have found increasing applications for upstream bioprocess studies (e.g., monitoring, development, optimization, scale-up, etc.). Many of these studies look at variations in the concentrations of metabolites and cell-based measurements. However, these measures are subject to system inherent variations (e.g., changes in metabolic activity) but also intentional operational changes. It is proposed to perform MVDA and modeling on data representative of the underlying biological system operation, that is, the specific rates, which are per se independent of the scale, operational strategy (e.g., batch, fed-batch), and biomass content. Two industrial case studies are highlighted to showcase the approach: one is HEK medium performance comparison study and the other is CHO scale-up/-down study. It is shown that analyzing processes in this way reveals insights into behavior of the underlying biological system, which cannot to the same degree be deducted from the analysis of concentrations.


Subject(s)
Bioreactors , Biomass , Culture Media
9.
Eng Life Sci ; 20(1-2): 26-35, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32625044

ABSTRACT

In bioprocesses, specific process responses such as the biomass cannot typically be measured directly on-line, since analytical sampling is associated with unavoidable time delays. Accessing those responses in real-time is essential for Quality by Design and process analytical technology concepts. Soft sensors overcome these limitations by indirectly measuring the variables of interest using a previously derived model and actual process data in real time. In this study, a biomass soft sensor based on 2D-fluorescence data and process data, was developed for a comprehensive study with a 20-L experimental design, for Escherichia coli fed-batch cultivations. A multivariate adaptive regression splines algorithm was applied to 2D-fluorescence spectra and process data, to estimate the biomass concentration at any time during the process. Prediction errors of 4.9% (0.99 g/L) for validation and 3.8% (0.69 g/L) for new data (external validation), were obtained. Using principal component and parallel factor analyses on the 2D-fluorescence data, two potential chemical compounds were identified and directly linked to cell metabolism. The same wavelength pairs were also important predictors for the regression-model performance. Overall, the proposed soft sensor is a valuable tool for monitoring the process performance on-line, enabling Quality by Design.

10.
Pharmaceutics ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560435

ABSTRACT

The Process Analytical Technology initiative and Quality by Design paradigm have led to changes in the guidelines and views of how to develop drug manufacturing processes. On this occasion the concept of the design space, which describes the impact of process parameters and material attributes on the attributes of the product, was introduced in the ICH Q8 guideline. The way the design space is defined and can be presented for regulatory approval seems to be left to the applicants, among who at least a consensus on how to characterize the design space seems to have evolved. The large majority of design spaces described in publications seem to follow a "static" statistical experimentation and modeling approach. Given that temporal deviations in the process parameters (i.e., moving within the design space) are of a dynamic nature, static approaches might not suffice for the consideration of the implications of variations in the values of the process parameters. In this paper, different forms of design space representations are discussed and the current consensus is challenged, which in turn, establishes the need for a dynamic representation and characterization of the design space. Subsequently, selected approaches for a dynamic representation, characterization and validation which are proposed in the literature are discussed, also showcasing the opportunity to integrate the activities of process characterization, process monitoring and process control strategy development.

11.
NPJ Syst Biol Appl ; 6(1): 6, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32170148

ABSTRACT

In biotechnology, the emergence of high-throughput technologies challenges the interpretation of large datasets. One way to identify meaningful outcomes impacting process and product attributes from large datasets is using systems biology tools such as metabolic models. However, these tools are still not fully exploited for this purpose in industrial context due to gaps in our knowledge and technical limitations. In this paper, key aspects restraining the routine implementation of these tools are highlighted in three research fields: monitoring, network science and hybrid modeling. Advances in these fields could expand the current state of systems biology applications in biopharmaceutical industry to address existing challenges in bioprocess development and improvement.


Subject(s)
Bioengineering/methods , Biological Products/metabolism , Systems Biology/methods , Biological Products/pharmacology , Biotechnology/methods , Biotechnology/trends , Industry/trends , Models, Biological
12.
Biotechnol J ; 15(5): e1900551, 2020 May.
Article in English | MEDLINE | ID: mdl-32022416

ABSTRACT

Upstream bioprocess characterization and optimization are time and resource-intensive tasks. Regularly in the biopharmaceutical industry, statistical design of experiments (DoE) in combination with response surface models (RSMs) are used, neglecting the process trajectories and dynamics. Generating process understanding with time-resolved, dynamic process models allows to understand the impact of temporal deviations, production dynamics, and provides a better understanding of the process variations that stem from the biological subsystem. The authors propose to use DoE studies in combination with hybrid modeling for process characterization. This approach is showcased on Escherichia coli fed-batch cultivations at the 20L scale, evaluating the impact of three critical process parameters. The performance of a hybrid model is compared to a pure data-driven model and the widely adopted RSM of the process endpoints. Further, the performance of the time-resolved models to simultaneously predict biomass and titer is evaluated. The superior behavior of the hybrid model compared to the pure black-box approaches for process characterization is presented. The evaluation considers important criteria, such as the prediction accuracy of the biomass and titer endpoints as well as the time-resolved trajectories. This showcases the high potential of hybrid models for soft-sensing and model predictive control.


Subject(s)
Escherichia coli/growth & development , Batch Cell Culture Techniques , Bioreactors , Fermentation , Models, Biological
13.
Biotechnol J ; 15(1): e1900172, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31486583

ABSTRACT

In this age of technology, the vision of manufacturing industries built of smart factories is not a farfetched future. As a prerequisite for Industry 4.0, industrial sectors are moving towards digitalization and automation. Despite its tremendous growth reaching a sales value of worth $188 billion in 2017, the biopharmaceutical sector distinctly lags in this transition. Currently, the challenges are innovative market disruptions such as personalized medicine as well as increasing commercial pressure for faster and cheaper product manufacturing. Improvements in digitalization and data analytics have been identified as key strategic activities for the next years to face these challenges. Alongside, there is an emphasis by the regulatory authorities on the use of advanced technologies, proclaimed through initiatives such as Quality by Design (QbD) and Process Analytical Technology (PAT). In the manufacturing sector, the biopharmaceutical domain features some of the most complex and least understood processes. Thereby, process models that can transform process data into more valuable information, guide decision-making, and support the creation of digital and automated technologies are key enablers. This review summarizes the current state of model-based methods in different bioprocess related applications and presents the corresponding future vision for the biopharmaceutical industry to achieve the goals of Industry 4.0 while meeting the regulatory requirements.


Subject(s)
Biopharmaceutics , Biotechnology , Drug Industry , Models, Biological , Automation, Laboratory , Humans , Research Design
14.
Microorganisms ; 7(12)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783658

ABSTRACT

BACKGROUND: Flux analyses, such as Metabolic Flux Analysis (MFA), Flux Balance Analysis (FBA), Flux Variability Analysis (FVA) or similar methods, can provide insights into the cellular metabolism, especially in combination with experimental data. The most common integration of extracellular concentration data requires the estimation of the specific fluxes (/rates) from the measured concentrations. This is a time-consuming, mathematically ill-conditioned inverse problem, raising high requirements for the quality and quantity of data. METHOD: In this contribution, a time integrated flux analysis approach is proposed which avoids the error-prone estimation of specific flux values. The approach is adopted for a Metabolic time integrated Flux Analysis and (sparse) time integrated Flux Balance/Variability Analysis. The proposed approach is applied to three case studies: (1) a simulated bioprocess case studying the impact of the number of samples (experimental points) and measurements' noise on the performance; (2) a simulation case to understand the impact of network redundancies and reaction irreversibility; and (3) an experimental bioprocess case study, showing its relevance for practical applications. RESULTS: It is observed that this method can successfully estimate the time integrated flux values, even with relatively low numbers of samples and significant noise levels. In addition, the method allows the integration of additional constraints (e.g., bounds on the estimated concentrations) and since it eliminates the need for estimating fluxes from measured concentrations, it significantly reduces the workload while providing about the same level of insight into the metabolism as classic flux analysis methods.

15.
Bioprocess Biosyst Eng ; 42(11): 1853-1865, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31375965

ABSTRACT

Hybrid semi-parametric modeling, combining mechanistic and machine-learning methods, has proven to be a powerful method for process development. This paper proposes bootstrap aggregation to increase the predictive power of hybrid semi-parametric models when the process data are obtained by statistical design of experiments. A fed-batch Escherichia coli optimization problem is addressed, in which three factors (biomass growth setpoint, temperature, and biomass concentration at induction) were designed statistically to identify optimal cell growth and recombinant protein expression conditions. Synthetic data sets were generated applying three distinct design methods, namely, Box-Behnken, central composite, and Doehlert design. Bootstrap-aggregated hybrid models were developed for the three designs and compared against the respective non-aggregated versions. It is shown that bootstrap aggregation significantly decreases the prediction mean squared error of new batch experiments for all three designs. The number of (best) models to aggregate is a key calibration parameter that needs to be fine-tuned in each problem. The Doehlert design was slightly better than the other designs in the identification of the process optimum. Finally, the availability of several predictions allowed computing error bounds for the different parts of the model, which provides an additional insight into the variation of predictions within the model components.


Subject(s)
Biomass , Escherichia coli/growth & development , Models, Biological
16.
Crit Rev Biotechnol ; 39(3): 289-305, 2019 May.
Article in English | MEDLINE | ID: mdl-30724608

ABSTRACT

Biotherapeutics, such as those derived from monoclonal antibodies (mAbs), are industrially produced in controlled multiunit operation bioprocesses. Each unit operation contributes to the final characteristics of the bioproduct. The complexity of the bioprocesses, the cellular machinery, and the bioproduct molecules, typically leads to inherent heterogeneity and variability of the final critical quality attributes (CQAs). In order to improve process control and increase product quality assurance, online and real-time monitoring of product CQAs is most relevant. In this review, the recent advances in CQAs monitoring of biotherapeutic drugs, with emphasis on mAbs, and throughout, the different bioprocess unit operations are reviewed. Recent analytical techniques used for assessment of product-related CQAs of mAbs are considered in light of the analytical speed and ability to measure different CQAs. Furthermore, the state of art modeling approaches for CQA estimation in real-time are presented as a viable alternative for real-time bioproduct CQA monitoring under the process analytical technology and quality-by-design frameworks in the biopharmaceutical industry, which have recently been demonstrated.


Subject(s)
Antibodies, Monoclonal/analysis , Biological Products/standards , Drug Industry/standards , Quality Control , Antibodies, Monoclonal/therapeutic use , Biological Products/analysis , Biological Products/therapeutic use , Humans
17.
Crit Rev Biotechnol ; 38(6): 957-970, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29514519

ABSTRACT

In today's biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure-activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure-activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure-activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.


Subject(s)
Antibodies, Monoclonal/chemistry , Drug Design , Protein Conformation , Quantitative Structure-Activity Relationship
18.
Synth Biol (Oxf) ; 3(1): ysy010, 2018.
Article in English | MEDLINE | ID: mdl-32995518

ABSTRACT

Predicting the activity of modified biological parts is difficult due to the typically large size of nucleotide sequences, resulting in combinatorial designs that suffer from the "curse of dimensionality" problem. Mechanistic design methods are often limited by knowledge availability. Empirical methods typically require large data sets, which are difficult and/or costly to obtain. In this study, we explore for the first time the combination of both approaches within a formal hybrid semiparametric framework in an attempt to overcome the limitations of the current approaches. Protein translation as a function of the 5' untranslated region sequence in Escherichia coli is taken as case study. Thermodynamic modeling, partial least squares (PLS) and hybrid parallel combinations thereof are compared for different data sets and data partitioning scenarios. The results suggest a significant and systematic reduction of both calibration and prediction errors by the hybrid approach in comparison to standalone thermodynamic or PLS modeling. Although with different magnitudes, improvements are observed irrespective of sample size and partitioning method. All in all the results suggest an increase of predictive power by the hybrid method potentially leading to a more efficient design of biological parts.

19.
Int J Pharm ; 532(1): 229-240, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28867450

ABSTRACT

A substantial drug release from poly(lactic-co-glycolic) acid (PLGA) micro- and nanoparticles can occur in the first hours of immersion, which is referred to as burst release. A strong burst release (when not intentional) is to be avoided as it decreases the efficacy of the treatment and could be dangerous to the host. In this work we analyze the total amount of drug released during burst and respective kinetics in relation to formulations characteristics, experimental conditions and drug molecular properties in 154 drug release experiments with 41 different drugs by partial least squares (PLS) and decision tree regression. The model created enables to quantify to which degree the physicochemical parameters control the burst release from PLGA particles. Our analysis shows that the amount of drug released during burst is mostly influenced by the formulation characteristics and the synthesis parameters, whereas the drug release kinetics is also influenced by the molecular properties of the drug. The variables that significantly influence the amount and kinetics of the burst release are discussed in detail and compared with findings from other researchers. The final regression models are shown to predict the release profile of a new drug, opening the possibility to be applied to systematically manipulate the burst release by means of designing an optimized drug delivery system.


Subject(s)
Drug Liberation , Lactic Acid/chemistry , Models, Theoretical , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Drug Compounding , Pharmaceutical Preparations/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Regression Analysis
20.
Biotechnol J ; 12(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28371494

ABSTRACT

The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization.


Subject(s)
Cell Culture Techniques/methods , Drug Industry/methods , Animals , Mammals , Models, Theoretical , Quality Control , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...