Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(14): 9309-9320, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29564442

ABSTRACT

Doped He nanodroplets are ideal model systems to study the dynamics of elementary photophysical processes in heterogeneous nanosystems. Here we present a combined experimental and theoretical investigation of the formation of free RbHe exciplex molecules from laser-excited Rb-doped He nanodroplets. Upon excitation of a droplet-bound Rb atom to the 5p3/22Π3/2-state, a stable RbHe exciplex forms within about 20 ps. Only due to 2Π3/2 → 2Π1/2 spin-relaxation does the RbHe exciplex detach from the He droplet surface with a half life of about 700 ps, given by the spin-relaxation time and the coupling of spin and translational degrees of freedom.

2.
J Phys Chem Lett ; 8(1): 307-312, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27996261

ABSTRACT

The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is ionized. For Rb excited to the 5p and 6p states, desorption occurs on starkly differing time scales (∼100 versus ∼1 ps, respectively). The comparison between theory and experiment indicates that desorption proceeds either impulsively (6p) or in a transition regime between impulsive dissociation and complex desorption (5p).

3.
J Chem Phys ; 138(21): 214201, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23758363

ABSTRACT

Electrostatic ion imaging with the velocity map imaging mode is a widely used method in atomic and molecular physics and physical chemistry. In contrast, the spatial map imaging (SMI) mode has received very little attention, despite the fact that it has been proposed earlier [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)]. Here, we present a detailed parametric characterization of SMI both by simulation and experiment. One-, two- and three-dimensional imaging modes are described. The influence of different parameters on the imaging process is described by means of a Taylor expansion. To experimentally quantify elements of the Taylor expansion and to infer the spatial resolution of our spectrometer, photoionization of toluene with a focused laser beam has been carried out. A spatial resolution of better than 4 µm out of a focal volume of several mm in diameter has been achieved. Our results will be useful for applications of SMI to the characterization of laser beams, the overlap control of multiple particle or light beams, and the determination of absolute collision cross sections.

SELECTION OF CITATIONS
SEARCH DETAIL
...