Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.473
Filter
1.
Biol Trace Elem Res ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630343

ABSTRACT

Population-based studies on the association between cadmium (Cd) exposure and thyroid function are limited and have shown conflicting results. Two independent cross-sectional studies using different Cd biomarkers were carried out in six rural areas with different soil Cd levels in China. Thyroid dysfunction was defined based on levels of thyroid stimulating hormone (TSH) and free thyroxine (FT4). Multivariable linear regression, multiple logistic regression, and restrictive cubic splines models were used to estimate the association between Cd and thyroid dysfunction. For both of the two independent studies, higher Cd levels were observed to be associated with lower TSH levels and higher risk of thyroid dysfunction. The negative relationship between urinary Cd and TSH was found in both total participants (ß = - 0.072, p = 0.008) and males (ß = - 0.119, p = 0.020) but not in females; however, the negative relationship between blood Cd and TSH was only found in females (ß = - 0.104, p = 0.024). Higher urinary Cd was associated with higher risk of thyroid dysfunction (OR = 1.77, p = 0.031), while higher blood Cd was associated with higher risk of thyroid dysfunction (OR = 1.95, p = 0.011). Results from the two independent cross-sectional studies consistently suggested that higher Cd levels were associated with sex-specific thyroid dysfunction.

2.
Cancer Sci ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623968

ABSTRACT

Enhancing sensitivity to sorafenib can significantly extend the duration of resistance to it, offering substantial benefits for treating patients with hepatocellular carcinoma (HCC). However, the role of ferroptosis in influencing sorafenib sensitivity within HCC remains pivotal. The enhancer of zeste homolog 2 (EZH2) plays a significant role in promoting malignant progression in HCC, yet the relationship between ferroptosis, sorafenib sensitivity, and EZH2 is not entirely clear. Bioinformatic analysis indicates elevated EZH2 expression in HCC, predicting an unfavorable prognosis. Overexpressing EZH2 can drive HCC cell proliferation while simultaneously reducing ferroptosis. Further analysis reveals that EZH2 amplifies the modification of H3K27 me3, thereby influencing TFR2 expression. This results in decreased RNA polymerase II binding within the TFR2 promoter region, leading to reduced TFR2 expression. Knocking down EZH2 amplifies sorafenib sensitivity in HCC cells. In sorafenib-resistant HepG2(HepG2-SR) cells, the expression of EZH2 is increased. Moreover, combining tazemetostat-an EZH2 inhibitor-with sorafenib demonstrates significant synergistic ferroptosis-promoting effects in HepG2-SR cells. In conclusion, our study illustrates how EZH2 epigenetically regulates TFR2 expression through H3K27 me3, thereby suppressing ferroptosis. The combination of the tazemetostat with sorafenib exhibits superior synergistic effects in anticancer therapy and sensitizes the HepG2-SR cells to sorafenib, shedding new light on delaying and ameliorating sorafenib resistance.

3.
Article in English | MEDLINE | ID: mdl-38597955

ABSTRACT

A nanomicrocapsule system was constructed through the polymerization of tannic acid (TA) and emulsifier OP-10 (OP-10), followed by the chelation of iron ions, to develop a safe and effective method for controlling Rhizoctonia solani in agriculture. The encapsulated active component is a rosin-based triazole derivative (RTD) previously synthesized by our research group (RTD@OP10-TA-Fe). The encapsulation efficiency of the nanomicrocapsules is 82.39%, with an effective compound loading capacity of 96.49%. Through the encapsulation of the RTD via nanomicrocapsules, we improved its water solubility, optimized its stability, and increased its adhesion to the leaf surface. Under acidic conditions (pH = 5.0), the release rate of nanomicrocapsules at 96 h is 96.31 ± 0.8%, which is 2.04 times higher than the release rate under normal conditions (pH = 7.0). Additionally, the results of in vitro and in vivo antifungal assays indicate that compared with the original compound, the nanomicrocapsules exhibit superior antifungal activity (EC50 values of RTD and RTD@OP10-TA-Fe are 1.237 and 0.860 mg/L, respectively). The results of field efficacy trials indicate that compared with RTD, RTD@OP10-TA-Fe exhibits a more prolonged period of effectiveness. Even after 3 weeks, the antifungal rate of RTD@OP10-TA-Fe remains at 40%, whereas RTD, owing to degradation, shows an antifungal rate of 11.11% during the same period. Furthermore, safety assessment results indicate that compared with the control, RTD@OP10-TA-Fe has almost no impact on the growth of rice seedlings and exhibits low toxicity to zebrafish. This study provides valuable insights into controlling R. solani and enhancing the compound performance.

4.
Stroke ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591228

ABSTRACT

BACKGROUND: Stroke is one of the leading causes of death among children, yet evidence on stroke incidence and prognosis in this population is largely neglected worldwide. The aim of this study was to estimate the latest burden of childhood stroke, as well as trends, risk factors, and inequalities from 1990 to 2019, at the global, regional, and national levels. METHODS: The Global Burden of Disease 2019 study was utilized to evaluate the prevalence, incidence, years lived with disability, years of life lost (YLLs), and average annual percentage changes in stroke among populations aged 0 to 19 years from 1990 to 2019. RESULTS: The global age-standardized incidence of stroke increased (average annual percentage change, 0.15% [95% uncertainty interval, 0.09%-0.21%]), while YLLs decreased substantially (average annual percentage change, -3.33% [95% uncertainty interval, -3.38% to -3.28%]) among children and adolescents between 1990 and 2019. Ischemic stroke accounted for 70% of incident cases, and intracerebral hemorrhage accounted for 63% of YLLs. Children under 5 years of age had the highest incidence of ischemic stroke, while adolescents aged 15 to 19 years had the highest incidence of hemorrhagic stroke. In 2019, low-income and middle-income countries were responsible for 84% of incident cases and 93% of YLLs due to childhood stroke. High-sociodemographic index countries had a reduction in YLLs due to stroke that was more than twice as fast as that of low-income and middle-income. CONCLUSIONS: Globally, the burden of childhood stroke continues to increase, especially among females, children aged <5 years, and low-sociodemographic index countries, such as sub-Saharan Africa. The burden of childhood stroke is likely undergoing a significant transition from being fatal to causing disability. Global public health policies and the deployment of health resources need to respond rapidly and actively to this shift.

5.
Opt Lett ; 49(7): 1774-1777, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560860

ABSTRACT

An ultra-broadband TM-pass polarizer is designed, fabricated, and experimentally demonstrated based on subwavelength grating (SWG) metamaterials in a lithium niobate on an insulator (LNOI) platform. According to our simulation, the designed device is predicted to work at a 220 nm wavelength range from 1460 to 1680 nm, covering the S-, C-, L-, U-bands of optical fiber communication. By depositing and subsequently etching a silicon nitride thin film atop the LNOI chip, the SWG structures are formed successfully by using complementary metal-oxide semiconductor (CMOS)-compatible fabrication processes. The measured results show a high polarization extinction ratio larger than 20 dB and a relatively low insertion loss below 2.5 dB over a 130 nm wavelength range from 1500 to 1630 nm, mainly limited by the operation bandwidth of our laser source.

6.
Phys Rev Lett ; 132(11): 116701, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563939

ABSTRACT

Cavity magnonics is an emerging research area focusing on the coupling between magnons and photons. Despite its great potential for coherent information processing, it has been long restricted by the narrow interaction bandwidth. In this Letter, we theoretically propose and experimentally demonstrate a novel approach to achieve broadband photon-magnon coupling by adopting slow waves on engineered microwave waveguides. To the best of our knowledge, this is the first time that slow wave is combined with hybrid magnonics. Its unique properties promise great potentials for both fundamental research and practical applications, for instance, by deepening our understanding of the light-matter interaction in the slow wave regime and providing high-efficiency spin wave transducers. The device concept can be extended to other systems such as optomagnonics and magnomechanics, opening up new directions for hybrid magnonics.

7.
Physiol Rep ; 12(7): e16000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584117

ABSTRACT

Few standardized tools are available for evaluation of disorders of consciousness (DOC). The potential of heart rate variability (HRV) during head-up tilt (HUT) test was investigated as a complementary evaluation tool. Twenty-one DOC patients and 21 healthy participants were enrolled in this study comparing clinical characteristics and HRV time- and frequency-domain outcomes and temporal changes during HUT test. During the 1st-5th min of the HUT, DOC group showed a significant increase and decrease in log low frequency (LF) (p = 0.045) and log normalized high frequency (nHF) (p = 0.02), respectively, compared to the supine position and had lower log normalized LF (nLF) (p = 0.004) and log ratio of low-to-high frequency (LF/HF) (p = 0.001) compared to healthy controls. As the HUT continued from the 6th to the 20th min, DOC group exhibited a significant increase in log LF/HF (16th-20th min) (p < 0.05), along with a decrease in log nHF (6th-10th and 16th-20th min) (p < 0.05) and maintained lower log LF, log nLF, and log LF/HF than controls (p < 0.05). 1st-10th min after returning to the supine position, DOC group demonstrated a significant decrease in log nHF (p < 0.01) and increases in log LF/HF (p < 0.01) and had lower log LF (p < 0.01) and log nLF (p < 0.05) compared to controls. In contrast, the control group exhibited a significant decrease in log nHF (p < 0.05) and increase in log LF/HF (p < 0.05) throughout the entire HUT test. Notably, no significant differences were observed when comparing time-domain outcomes reflecting parasympathetic nervous system between the two groups. HRV during HUT test indicated a delayed and attenuated autonomic response, particularly in the sympathetic nervous system, in DOC patients compared with healthy individuals.


Subject(s)
Consciousness Disorders , Sympathetic Nervous System , Humans , Heart Rate/physiology , Tilt-Table Test , Autonomic Nervous System/physiology
8.
Opt Lett ; 49(8): 1969-1972, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621053

ABSTRACT

Photonic integrated circuits have garnered significant attention and experienced rapid development in recent years. To provide fundamental building blocks for scalable optical classical and quantum information processing, one important direction is to develop cryogenic compatible photonic integrated devices. Here, we prepare one optical filter on a lithium-niobate-on-insulator (LNOI) platform based on a multimode waveguide grating and verify its availability at temperature from 295 to 7 K. We find that the integrated optical filter still shows good quality under cryogenic conditions, and the shift of the working wavelength at different temperatures is well explained by the index variation of the material. These results advance LNOI integrated optical devices in applications under cryogenic conditions.

9.
Ecotoxicol Environ Saf ; 276: 116283, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38574647

ABSTRACT

Equilibration of metal metabolism is critical for normal liver function. Most epidemiological studies have only concentrated on the influence of limited metals. However, the single and synergistic impact of multiple-metal exposures on abnormal liver function (ALF) are still unknown. A cross-sectional study involving 1493 Chinese adults residing in Shenzhen was conducted. Plasma concentrations of 13 metals, including essential metals (calcium, copper, cobalt, iron, magnesium, manganese, molybdenum, zinc, and selenium) and toxic metals (aluminum, cadmium, arsenic, and thallium) were detected by the inductively coupled plasma spectrometry (ICP-MS). ALF was ascertained as any observed abnormality from albumin, alanine transaminase, aspartate transaminase, γ-glutamyl transpeptidase, and direct bilirubin. Diverse statistical methods were used to evaluate the single and mixture effect of metals, as well as the dose-response relationships with ALF risk, respectively. Mediation analysis was conducted to evaluate the role of blood lipids in the relation of metal exposure with ALF. The average age of subjects was 59.7 years, and 56.7 % were females. Logistic regression and the least absolute shrinkage and selection operator (LASSO) penalized regression model consistently suggested that increased levels of arsenic, aluminum, manganese, and cadmium were related to elevated risk of ALF; while magnesium and zinc showed protective effects on ALF (all p-trend < 0.05). The grouped weighted quantile sum (GWQS) regression revealed that the WQS index of essential metals and toxic metals showed significantly negative or positive relationship with ALF, respectively. Aluminum, arsenic, cadmium, and manganese showed linear whilst magnesium and zinc showed non-linear dose-response relationships with ALF risk. Mediation analysis showed that LDL-c mediated 4.41 % and 14.74 % of the relationship of plasma cadmium and manganese with ALF, respectively. In summary, plasma aluminum, arsenic, manganese, cadmium, magnesium, and zinc related with ALF, and LDL-c might underlie the pathogenesis of ALF associated with cadmium and manganese exposure. This study may provide critical public health significances in liver injury prevention and scientific evidence for the establishment of environmental standard.

10.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456625

ABSTRACT

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Quantitative Trait Loci/genetics , Plant Breeding , Genomics , Phenotype
11.
Dev Dyn ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516819

ABSTRACT

The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.

12.
Langmuir ; 40(12): 6220-6228, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38471015

ABSTRACT

Sulfamethazine (SAT) is widely present in sediment, soil, rivers, and groundwater. Unfortunately, traditional water treatment technologies are inefficient at eliminating SAT from contaminated water. Therefore, developing an effective and ecologically friendly treatment procedure to effectively remove SAT is critical. This has raised concerns about its potential impact on the environment and human health. In this study, metal-organic-inorganic composites consisting of graphene-encapsulated Fe-Mn metal catalyst (Mn3Fe1-NC) were synthesized by calcining MnFe Prussian blue analogs (PBA) under a nitrogen atmosphere. The composites were applied to activate peroxymonosulfate (PMS) and facilitate the degradation of SAT in aquatic environments. The Mn3Fe1-NC, dosed with 5 mg, in combination with PMS, dosed with 1.5 mmol L-1, achieved a 91.8% degradation efficiency of SAT. The transformation of the CN skeleton led to the formation of a carbon shell structure, which consequently reduced metal ion leaching from the material. At various pH levels, the iron and manganese ions were observed to leach out at levels lower than 0.1392 and 0.0580 mg L-1, respectively. In contrast, the Mn3Fe1-NC was found to be minimally impacted by pH levels and coexisting ions present in the aqueous environment. Radical burst experiments and electrochemical analysis tests verified that degradation primarily occurs through the nonradical pathway of electron transfer. The active sites responsible for this process were identified as the Mn (IV) and graphitic-N atoms on the material, which facilitate direct electron transfer. Additionally, the presence of Fe atoms promotes the valence cycling of Mn atoms. This study introduces new insights into the reaction mechanism and the constitutive relationship of catalytic centers in nonradical oxidation reactions.

13.
Acta Pharmacol Sin ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519646

ABSTRACT

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-ß production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-ß inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1ß and p53, which accounts for the suppression of TGF-ß production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-ß/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.

14.
Front Immunol ; 15: 1266850, 2024.
Article in English | MEDLINE | ID: mdl-38426102

ABSTRACT

The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.


Subject(s)
Immune Checkpoint Inhibitors , Pneumonia , Humans , Immune Checkpoint Inhibitors/adverse effects , Pneumonia/chemically induced , Pneumonia/diagnosis , Risk Factors
15.
Environ Sci Pollut Res Int ; 31(17): 25978-25990, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492140

ABSTRACT

China has become one of the most serious countries suffering from biological invasions in the world. In the context of global climate change, invasive alien species (IAS) are likely to invade a wider area, posing greater ecological and economic threats in China. Western mosquitofish (Gambusia affinis), which is known as one of the 100 most invasive alien species, has distributed widely in southern China and is gradually spreading to the north, causing serious ecological damage and economic losses. However, its distribution in China is still unclear. Hence, there is an urgent need for a more convenient way to detect and monitor the distribution of G. affinis to put forward specific management. Therefore, we detected the distribution of G. affinis in China under current and future climate change by combing Maxent modeling prediction and eDNA verification, which is a more time-saving and reliable method to estimate the distribution of species. The Maxent modeling showed that G. affinis has a broad habitat suitability in China (especially in southern China) and would continue to spread in the future with ongoing climate change. However, eDNA monitoring showed that occurrences can already be detected in regions that Maxent still categorized as unsuitable. Besides temperature, precipitation and human influence were the most important environmental factors affecting the distribution of G. affinis in China. In addition, by environmental DNA analysis, we verified the presence of G. affinis predicted by Maxent in the Qinling Mountains where the presence of G. affinis had not been previously recorded.

16.
Langmuir ; 40(14): 7384-7394, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530344

ABSTRACT

Photocatalytic technology is a popular research area for converting solar energy into environmentally friendly chemicals and is considered the greenest approach for producing H2O2. However, the corresponding reactive oxygen species (ROS) and pathway involved in the photocatalytic generation of H2O2 by the Bi2.15WO6-glucose system are still not clear. Quenching experiments have established that neither •OH nor h+ contribute to the formation of H2O2, and show that the formed surface superoxo (≡Bi-OO•) and peroxo (≡Bi-OOH) species are the predominant ROS in H2O2 generation. In addition, various characterizations indicate the enhanced electron-transfer on the surface of Bi2.15WO6 with increasing contents of glucose via the ligand-to-metal charge transfer pathway, confirming H-transfer from glucose to ≡Bi-OO• or ≡Bi-OOH. The increased production of H2O2 with decreasing bond dissociation energy (BDEO-H) values of various phenolic compounds again supports the H-transfer mechanism from phenolic compounds to ≡Bi-OO• and then to ≡Bi-OOH. DFT calculations further reveal that on the Bi2.15WO6 surface, oxygen is sequentially reduced to ≡Bi-OO• and ≡Bi-OOH, while H-transfer from H2O or glucose to ≡Bi-OO• and ≡Bi-OOH, resulting in the production of H2O2. The lower energy barrier of H-transfer from adsorbed glucose (0.636 eV) than that from H2O (1.157 eV) indicates that H-transfer is more favorable from adsorbed glucose. This work gives new insight into the photocatalytic generation of H2O2 by Bi2.15WO6 in the presence of glucose/phenolic compounds via the H-abstraction pathway.

17.
J Environ Manage ; 356: 120543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479284

ABSTRACT

In aquifers, the sequestration and transformation of organic carbon are closely associated with soil iron oxides and can facilitate the release of iron ions from iron oxide minerals. There is a strong interaction between dissolved organic matter (DOM) and iron oxide minerals in aquifers, but the extent to which iron is activated by DOM exposure to active iron minerals in natural aquifers, the microscopic distribution of minerals on the surface, and the mechanisms involved in DOM molecular transformation are currently unclear. This study investigated the nonbiological reduction transformation and coupled adsorption of iron oxide minerals in aquifers containing DOM from both macro- and micro perspectives. The results of macroscopic dynamics experiments indicate that DOM can mediate soluble iron release during the reduction of iron oxide minerals, that pH strongly affects DOM removal, and that DOM is more efficiently degraded at low rather than high pH values, suggesting that a low pH is conducive to DOM adsorption and oxidation. Spherical aberration-corrected scanning transmission electron microscopy (SACTS) indicates that the reacted mineral surfaces are covered with large amounts of carbon and that dynamic agglomeration of iron, carbon, and oxygen occurs. At the nanoscale, three forms of DOM are found in the mineral surface agglomerates (on the surfaces, inside the surface agglomerates, and in the polymer pores). The microscopic organic carbon and iron mineral reaction patterns can form through oxidation reactions and selective adsorption effects. Fourier transform ion cyclotron resonance mass spectra indicate that both synergistic and antagonistic reactions occur between DOM and the minerals, that the release of iron is accompanied by DOM decomposition and humification, that large oxygen- and carbon-containing molecules are broken down into smaller oxygen- and carbon-containing compounds and that more molecules are produced through oxidation under acidic rather than alkaline conditions. These molecules provide adsorption sites for sediment, meaning that more iron can be released. Microscopic evidence for the release of iron was acquired. These results improve the understanding of the geochemical processes affecting iron in groundwater, the nonbiological transformation mechanisms that occur at the interfaces between natural iron minerals and organic matter, groundwater pollution control, and the environmental behavior of pollutants.


Subject(s)
Ferric Compounds , Groundwater , Humic Substances , Adsorption , Minerals , Iron/chemistry , Carbon , Organic Chemicals , Dissolved Organic Matter , Oxygen
18.
Pest Manag Sci ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529554

ABSTRACT

BACKGROUND: To further develop potential natural fungicides, two series of new acrylopimaric acid triazole derivatives were synthesized, and their antifungal activities were tested and evaluated. RESULTS: In vitro antifungal activity results indicated that compound 5m exhibited significant inhibitory activity against Rhizoctonia solani with an half maximal effective concentration (EC50) value of 1.528 mg/L. Its antifungal effect was comparable to that of the commercially available fungicide fluconazole, epoxiconazole and propiconazole (EC50 values of 1.441, 0.815 and 1.173 mg/L). Subsequently, in vivo studies were conducted on compound 5m, which revealed its significant protective and curative effects against R. solani. In addition, physiological and biochemical studies showed that compound 5m could disrupt the morphology and ultrastructure of R. solani mycelium, increase cell membrane permeability, inhibit ergosterol synthesis, and enhance the activity of defense enzymes in rice plants. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies revealed that the molecular structure significantly influenced the binding of compound 5m to the receptor, thereby enhancing its antifungal activity. CONCLUSION: Compound 5m exhibits excellent antifungal activity against R. solani, making it a promising candidate fungicide for the prevention and control of R. solani. © 2024 Society of Chemical Industry.

19.
Clin Chim Acta ; 557: 117884, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38522821

ABSTRACT

BACKGROUND: Copy number variation sequencing (CNV-seq) is crucial in prenatal diagnosis, but its limitations in detecting polyploidy, maternal cell contamination (MCC), and uniparental disomy (UPD) restrict its application in the analysis of products of conception (POCs). This study aimed to investigate an optimal genetic testing strategy for POCs in the era of CNV-seq. METHODS: CNV-seq and quantitative fluorescent polymerase chain reaction (QF-PCR) were performed in all 4,211 spontaneous miscarriage cases. Different testing strategies were compared and the optimal testing strategies were proposed. RESULTS: Of the 4,211 cases, 2561 (60.82%) exhibited clinically significant chromosomal abnormalities. CNV-seq alone, without QF-PCR, might misdiagnose 311 (7.39%) cases, including 278 polyploidy, 13 UPD, and 20 MCC. In 20 MCC cases identified by QF-PCR, CNV-seq successfully pinpointed the cause of miscarriage in 13 cases. Furthermore, in cases where QF-PCR suggested polyploidy, CNV-seq improved the diagnostic accuracy in 54 (1.28%) hypo/hypertriploidy cases. After comparing four different strategies, the sequential approach (initiating with CNV-seq followed by QF-PCR if necessary) emerged as advantageous, reducing approximately 70% of the cost associated with QF-PCR while maintaining result accuracy. CONCLUSIONS: We propose an initial CNV-seq followed by QF-PCR if needed-an efficient and cost-effective strategy for the genetic analysis of POCs.


Subject(s)
Abortion, Spontaneous , Chromosome Disorders , Pregnancy , Female , Humans , Chromosome Disorders/genetics , DNA Copy Number Variations/genetics , Abortion, Spontaneous/diagnosis , Abortion, Spontaneous/genetics , Karyotyping , Chromosome Aberrations , Prenatal Diagnosis , Polyploidy
20.
Sci Total Environ ; 926: 171513, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38460695

ABSTRACT

Drinking water treatment sludge (DWTS) is a by-product of water treatment, and it is difficult to recycle to high value and poses potential environmental risks. Recycling DWTS into cement-based materials is an effective measure to achieve its high-volume utilization and reduce its environmental load. DWTS is rich in silica-alumina phases and has potential pozzolanic activity after drying, grinding and calcination, giving it similar properties to traditional supplementary cementitious materials. Adjusting the sludge production process and coagulant type will change its physical and chemical properties. Adding a small amount of DWTS can generate additional hydration products and refine the pore structure of the cement sample, thus improving the mechanical properties and durability of the sample. However, adding high-volume DWTS to concrete causes microstructural deterioration, but it is feasible to use high-volume DWTS to produce artificial aggregates, lightweight concrete, and sintered bricks. Meanwhile, calcined DWTS has similar compositions to clay, which makes it a potential raw material for cement clinker production. Cement-based materials can effectively solidify heavy metal ions in DWTS, and alkali-activated binders, magnesium-based cement, and carbon curing technology can further reduce the risk of heavy metal leaching. This review provides support for the high-value utilization of DWTS in cement-based materials and the reduction of its potential environmental risks.

SELECTION OF CITATIONS
SEARCH DETAIL
...