Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 276
Filter
1.
J Hosp Infect ; 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34562547

ABSTRACT

BACKGROUND: While the range of possible transmission pathways of SARS-CoV-2 in various settings has been thoroughly investigated, recently most authorities acknowledged the role of aerosol spread in the transmission of the virus especially in indoor environments where the ventilation is poor. Engineering controls are needed to mitigate aerosol transmission in high risk settings including hospital wards, classrooms, and offices. AIM: To assess the effectiveness of aerosol filtration by portable air cleaning devices with high efficiency particulate air (HEPA) filters used in addition to standard building heating ventilation and air-conditioning (HVAC). METHODS: Test rooms, including a hospital single-patient room, were filled with test aerosol to simulate aerosol movement. Aerosol counts were measured over time with various portable air cleaning devices and room ventilation systems to quantify the overall aerosol clearance rate. FINDINGS: Portable air cleaners were very effective in removing aerosols. In a small control room, the aerosols were cleared five times faster with portable air cleaners than the room with HVAC alone. A single bed hospital room equipped with an excellent ventilation rate (∼14 air changes per hour) can clear the aerosols in 20 minutes. However, with the addition of two air cleaners, the clearance time became three times faster. CONCLUSIONS: Inexpensive portable air cleaning devices should be considered for small and enclosed spaces in health care settings such as inpatient rooms and personal protective equipment donning/doffing stations. Portable air cleaners are particularly important where there is limited ability to reduce aerosol transmission with building HVAC ventilation.

2.
J Am Chem Soc ; 143(37): 15258-15270, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491725

ABSTRACT

Carbon capture at fossil fuel-fired power plants is a critical strategy to mitigate anthropogenic contributions to global warming, but widespread deployment of this technology is hindered by a lack of energy-efficient materials that can be optimized for CO2 capture from a specific flue gas. As a result of their tunable, step-shaped CO2 adsorption profiles, diamine-functionalized metal-organic frameworks (MOFs) of the form diamine-Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are among the most promising materials for carbon capture applications. Here, we present a detailed investigation of dmen-Mg2(dobpdc) (dmen = 1,2-diamino-2-methylpropane), one of only two MOFs with an adsorption step near the optimal pressure for CO2 capture from coal flue gas. While prior characterization suggested that this material only adsorbs CO2 to half capacity (0.5 CO2 per diamine) at 1 bar, we show that the half-capacity state is actually a metastable intermediate. Under appropriate conditions, the MOF adsorbs CO2 to full capacity, but conversion from the half-capacity structure happens on a very slow time scale, rendering it inaccessible in traditional adsorption measurements. Data from solid-state magic angle spinning nuclear magnetic resonance spectroscopy, coupled with van der Waals-corrected density functional theory, indicate that ammonium carbamate chains formed at half capacity and full capacity adopt opposing configurations, and the need to convert between these states likely dictates the sluggish post-half-capacity uptake. By use of the more symmetric parent framework Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate), the metastable trap can be avoided and the full CO2 capacity of dmen-Mg2(pc-dobpdc) accessed under conditions relevant for carbon capture from coal-fired power plants.

3.
Adv Mater ; : e2101598, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533851

ABSTRACT

The controllability of carrier density and major carrier type of transition metal dichalcogenides(TMDCs) is critical for electronic and optoelectronic device applications. To utilize doping in TMDC devices, it is important to understand the role of dopants in charge transport properties of TMDCs. Here, the effects of molecular doping on the charge transport properties of tungsten diselenide (WSe2 ) are investigated using three p-type molecular dopants, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 -TCNQ), tris(4-bromophenyl)ammoniumyl hexachloroantimonate (magic blue), and molybdenum tris(1,2-bis(trifluoromethyl)ethane-1,2-dithiolene) (Mo(tfd-COCF3 )3 ). The temperature-dependent transport measurements show that the dopant counterions on WSe2 surface can induce Coulomb scattering in WSe2 channel and the degree of scattering is significantly dependent on the dopant. Furthermore, the quantitative analysis revealed that the amount of charge transfer between WSe2 and dopants is related to not only doping density, but also the contribution of each dopant ion toward Coulomb scattering. The first-principles density functional theory calculations show that the amount of charge transfer is mainly determined by intrinsic properties of the dopant molecules such as relative frontier orbital positions and their spin configurations. The authors' systematic investigation of the charge transport of doped TMDCs will be directly relevant for pursuing molecular routes for efficient and controllable doping in TMDC nanoelectronic devices.

4.
Article in English | MEDLINE | ID: mdl-34342422

ABSTRACT

Diamine-appended metal-organic frameworks (MOFs) exhibit exceptional CO2 adsorption capacities over a wide pressure range because of the strong interaction between basic amine groups and acidic CO2. Given that their high CO2 working capacity is governed by solvent used during amine functionalization, a systematic investigation on solvent effect is essential but not yet demonstrated. Herein, we report a facile one-step solvent exchange route for the diamine functionalization of MOFs with open metal sites, using an efficient method to maximize diamine loading. We employed an MOF, Mg2(dobpdc) (dobpdc4- = 4,4'-dioxido-3,3'-biphenyldicarboxylate), which contains high-density open metal sites. Indirect grafting with N-ethylethylenediamine (een) was performed with a minimal amount of methanol (MeOH) via multiple MeOH exchanges and diamine functionalization, resulting in a top-tier CO2 adsorption capacity of 16.5 wt %. We established the correlation between N,N-dimethylformamide (DMF) loading and infrared peaks, which provides a simple method for determining the amount of the remaining DMF in Mg2(dobpdc). All interactions among Mg, DMF, diamine, and solvent were analyzed by van der Waals (vdw)-corrected density functional theory (DFT) calculations to elucidate the effect of chemical potential on diamine grafting.

5.
Sensors (Basel) ; 21(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206716

ABSTRACT

In this paper, we propose random beam-based non-orthogonal multiple access (NOMA) for low latency multiple-input single-output (MISO) broadcast channels, where there is a target signal-to-interference-plus-noise power ratio (SINR) for each user. In our system model, there is a multi-antenna transmitter with its own single antenna users, and the transmitter selects and serves some of them. For low latency, the transmitter exploits random beams, which can reduce the feedback overhead for the channel acquisition, and each beam can support more than a single user with NOMA. In our proposed random beam-based NOMA, each user feeds a selected beam index, the corresponding SINR, and the channel gain, so it feeds one more scalar value compared to the conventional random beamforming. By allocating the same powers across the beams, the transmitter independently selects NOMA users for each beam, so it can also reduce the computational complexity. We optimize our proposed scheme finding the optimal user grouping and the optimal power allocation. The numerical results show that our proposed scheme outperforms the conventional random beamforming by supporting more users for each beam.


Subject(s)
Algorithms , Signal-To-Noise Ratio
6.
Aust Crit Care ; 2021 May 11.
Article in English | MEDLINE | ID: mdl-34144863

ABSTRACT

BACKGROUND: Healthcare workers (HCWs) have frequently become infected with severe acute respiratory syndrome coronavirus 2 whilst treating patients with coronavirus disease 2019 (COVID-19). A variety of novel devices have been proposed to reduce COVID-19 cross-contamination. OBJECTIVES: The aim of the study was (i) to test whether patients and HCWs thought that a novel patient isolation hood was safe and comfortable and (ii) to obtain COVID-19 infection data of hospital HCWs. METHODS: This is a prospective cohort study of 20 patients, entailing HCW/patient questionnaires and safety aspects of prototype isolation hoods. COVID-19 data of HCWs were prospectively collected. Assessment of the hood's safety and practicality and adverse event reporting was carried out. OUTCOME MEASURES: The outcome measures are as follows: questionnaire responses, adverse event reporting, rates of infections in HCWs during the study period (20/6/2020 to 21/7/2020), and COVID-19 infections in HCWs reported until the last recorded diagnosis of COVID-19 in HCWs (20/6/2020 to 27/9/2020). RESULTS: Of the 64 eligible individual HCW surveys, 60 surveys were overall favourable (>75% questions answered in favour of the isolation hood). HCWs were unanimous in perceiving the hood as safe (60/60), preferring its use (56/56), and understanding its potential COVID-19 cross-contamination minimisation (60/60). All eight patients who completed the questionnaire thought the isolation hood helped prevent COVID-19 cross infection and was safe and comfortable. There were no reported patient safety adverse events. The COVID-19 attack rate from 20/6/2020 to 27/9/2020 among registered nurses was as follows: intensive care units (ICUs), 2.2% (3/138); geriatric wards, 13.2% (26/197); and COVID-19 wards, 18.3% (32/175). The COVID-19 attack rate among medical staff was as follows: junior staff, 2.1% (24/932); senior staff, 0.7% (4/607); aged care/rehabilitation, 6.7% (2/30); and all ICU medical staff, 8.6% (3/35). CONCLUSIONS: The isolation hood was preferred to standard care by HCWs and well tolerated by patients, and after the study, isolation hoods became part of standard ICU therapy. There was an association between being an ICU nurse and a low COVID-19 infection rate (no causality implied). ICU HCWs feel safer when treating patients with COVID-19 using an isolation hood.

7.
Article in English | MEDLINE | ID: mdl-34156823

ABSTRACT

Over the past several decades, tin monoxide (SnO) has been studied extensively as a p-type thin film transistor (TFT). However, its TFT performance is still insufficient for practical use. Many studies suggested that the instability of the valence state of Sn (Sn2+/Sn4+) is a critical reason for the poor performance such as limited mobility and low on/off ratio. For SnO, the Sn 5s-O 2p hybridized state is a key component for obtaining p-type conduction. Thus, a strategy for stabilizing the SnO phase is essential. In this study, we employ a variety of analytical methods such as X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and Hall measurement to identify the main contributors to the physical properties of SnO. It is revealed that precision control of the process temperature is needed to achieve both the crystallinity and thermal stability of SnO. In other words, it would be ideal to obtain high-quality SnO thin films at low temperature. We find that atomic layer deposition (ALD) is a quite advantageous process for obtaining high-quality SnO thin films by the following two-step process: (i) growth of highly c-axis oriented SnO at the initial stage and (ii) further crystallization along the in-plane direction by a postannealing process. Consequently, we obtained a highly dense SnO thin film (film density: 6.4 g/cm3) with a high Hall mobility of ∼5 cm2/(V·s). The fabricated SnO TFTs exhibit a field-effect mobility of ∼6.0 cm2/(V·s), which is a quite high value among the SnO TFTs reported to date, with long-term stability. We believe that this study demonstrates the validity of the ALD process for SnO TFTs.

9.
J Food Sci ; 86(7): 3075-3081, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34155649

ABSTRACT

Steviol glycosides are well-known food sweeteners; their consumption has steadily increased over time. A pretreatment method was developed and validated to better separate rebaudioside A and stevioside from various protein-rich and fatty foods for quantification. This method was applied to soy sauce in liquid type and fish cake and coffee in solid type. Parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision were calculated. Calibration curves were linear in the working range of 5-100 mg/l, with coefficients of determination ≥0.99. The LOD and LOQ were in the ranges of 0.16-0.39 and 0.52-1.28 mg/kg, respectively. The percentage recoveries of the fortified samples were in the 88.01%-103.09% range, and the relative standard deviation was <10%. Method validation predicted a desirable accuracy, linearity, and precision. Therefore, the developed method can be practically applied for the quantitation of steviol glycosides in various foods, including soy sauce in liquid type and fish cake and coffee in solid type.


Subject(s)
Diterpenes, Kaurane/analysis , Food Analysis/methods , Food Analysis/standards , Glucosides/analysis , Stevia/chemistry , Sweetening Agents/analysis , Limit of Detection
10.
Oncology ; 99(8): 528-538, 2021.
Article in English | MEDLINE | ID: mdl-34107469

ABSTRACT

BACKGROUND: Sex-determining region Y-box 2 (SOX2) is a transcriptional factor that drives embryonic stem cells to neuroendocrine cells in lung development and is highly expressed in small-cell lung cancer (SCLC). However, the prognostic role of SOX2 and its relationship with tumor-infiltrating lymphocytes (TILs) has not been determined in SCLC. Herein, we assessed the expression of SOX2 and CD8+ TILs to obtain insights into the prognostic role of SOX2 and CD8+ TILs in limited-stage (LS)-SCLC. METHODS: A total of 75 patients with LS-SCLC was enrolled. The SOX2 expression and CD8+ TILs were evaluated by immunohistochemistry. RESULTS: High SOX2 and CD8+ TIL levels were identified in 52 (69.3%) and 40 (53.3%) patients, respectively. High SOX2 expression was correlated with increased density of CD8+ TILs (p = 0.041). Unlike SOX2, high CD8+ TIL numbers were associated with significantly longer progression-free survival (PFS; 13.9 vs. 8.0 months, p = 0.014). Patients with both high SOX2 expression and CD8+ TIL numbers (n = 29, 38.7%) had significantly longer PFS and overall survival (OS) compared to those from the other groups (median PFS 19.3 vs. 8.4 months; p = 0.002 and median OS 35.7 vs. 17.4 months; p = 0.004, respectively). Multivariate Cox regression analysis showed that the combination of high SOX2 expression and CD8+ TIL levels was an independent good prognostic factor for OS (HR = 0.471, 95% CI, 0.250-0.887, p = 0.02) and PFS (HR = 0.447, 95% CI, 0.250-0.801, p = 0.007) in SCLC. CONCLUSIONS: Evaluation of the combination of SOX2 and CD8+ TIL levels may be of a prognostic value in LS-SCLC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , SOXB1 Transcription Factors/biosynthesis , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Prognosis , Survival Rate
11.
Neurotherapeutics ; 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33884581

ABSTRACT

Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein-coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.

12.
Nanoscale ; 13(15): 7348-7354, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33889912

ABSTRACT

Plasmonic PCR utilizing metallic nanoparticles has shown great advantages compared to the commercial thermocycler equipment in terms of cost, size and processing time. However, due to the strong fluorescence quenching, plasmonic nanoparticle-based PCR requires additional post-processing steps such as centrifugation and gel electrophoresis. This process increases the overall diagnostic time, offsetting the benefits of fast thermocycling. Here, we report a rapid and sensitive plasmonic photothermal PCR (PPT-PCR) assay method based on in situ end-point fluorescence detection. By using plasmonic magnetic bi-functional nanoparticles, PPT-PCR involving 30 thermocycles and fluorescence detection following magnetic separation has successfully shown that DNA targets can be detected within 5.5 minutes. The limit of detection (3.3 copies per µL) is comparable with that of the conventional real-time quantitative PCR; however, the assay time is about 5.5 times shorter for the PPT-PCR. The strategy of combining the photothermal effect and magnetic separation into a single particle will open new horizons in the development of fast and sensitive PCR-based biosensors for point-of care testing.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Polymerase Chain Reaction
13.
ChemSusChem ; 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33871138

ABSTRACT

Although CO2 insertion is a predominant phenomenon in diamine-functionalized Mg2 (dobpdc) (dobpdc4- =4,4-dioxidobiphenyl-3,3'-dicarboxylate) adsorbents, a high-performance metal-organic framework for capturing CO2 , the fundamental function of the diamine carbon chain length in the mechanism remains unclear. Here, Mg2 (dobpdc) systems with open metal sites grafted by primary diamines NH2 -(CH2 )n -NH2 were developed, with en (n=2), pn (n=3), bn (n=4), pen (n=5), hn (n=6), and on (n=8). Based on CO2 adsorption and IR results, CO2 insertion is involved in frameworks with n=2 and 3 but not in systems with n≥5. According to NMR data, bn-appended Mg2 (dobpdc) exhibited three different chemical environments of carbamate units, attributed to different relative conformations of carbon chains upon CO2 insertion, as validated by first-principles density functional theory (DFT) calculations. For 1-hn and 1-on, DFT calculations indicated that diamine inter-coordinated open metal sites in adjacent chains bridged by carboxylates and phenoxides of dobpdc4- . Computed CO2 binding enthalpies for CO2 insertion (-27.8 kJ mol-1 for 1-hn and -20.2 kJ mol-1 for 1-on) were comparable to those for CO2 physisorption (-19.3 kJ mol-1 for 1-hn and -20.8 kJ mol-1 for 1-on). This suggests that CO2 insertion is likely to compete with CO2 physisorption on diamines of the framework when n≥5.

15.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523989

ABSTRACT

The chromatin-modifying histone deacetylases (HDACs) remove acetyl groups from acetyl-lysine residues in histone amino-terminal tails, thereby mediating transcriptional repression. Structural makeup and mechanisms by which multisubunit HDAC complexes recognize nucleosomes remain elusive. Our cryo-electron microscopy structures of the yeast class II HDAC ensembles show that the HDAC protomer comprises a triangle-shaped assembly of stoichiometry Hda12-Hda2-Hda3, in which the active sites of the Hda1 dimer are freely accessible. We also observe a tetramer of protomers, where the nucleosome binding modules are inaccessible. Structural analysis of the nucleosome-bound complexes indicates how positioning of Hda1 adjacent to histone H2B affords HDAC catalysis. Moreover, it reveals how an intricate network of multiple contacts between a dimer of protomers and the nucleosome creates a platform for expansion of the HDAC activities. Our study provides comprehensive insight into the structural plasticity of the HDAC complex and its functional mechanism of chromatin modification.

16.
J Am Chem Soc ; 143(4): 1948-1958, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33492140

ABSTRACT

Fluoroarenes are widely used in medicinal, agricultural, and materials chemistry, and yet their production remains a critical challenge in organic synthesis. Indeed, the nearly identical physical properties of these vital building blocks hinders their purification by traditional methods, such as flash chromatography or distillation. As a result, the Balz-Schiemann reaction is currently employed to prepare fluoroarenes instead of more atom-economical C-H fluorination reactions, which produce inseparable mixtures of regioisomers. Herein, we propose an alternative solution to this problem: the purification of mixtures of fluoroarenes using metal-organic frameworks (MOFs). Specifically, we demonstrate that controlling the interaction of fluoroarenes with adjacent coordinatively unsaturated Mg2+ centers within a MOF enables the separation of fluoroarene mixtures with unparalleled selectivities. Liquid-phase multicomponent equilibrium adsorption data and breakthrough measurements coupled with van der Waals-corrected density functional theory calculations reveal that the materials Mg2(dobdc) (dobdc4- = 2,5-dioxidobenzene-1,4-dicarboxylate) and Mg2(m-dobdc) (m-dobdc4- = 2,4-dioxidobenzene-1,5-dicarboxylate) are capable of separating the difluorobenzene isomers from one another. Additionally, these frameworks facilitate the separations of fluoroanisoles, fluorotoluenes, and fluorochlorobenzenes. In addition to enabling currently unfeasible separations for the production of fluoroarenes, our results suggest that carefully controlling the interaction of isomers with not one but two strong binding sites within a MOF provides a general strategy for achieving challenging liquid-phase separations.


Subject(s)
Coordination Complexes/chemistry , Fluorine/chemistry , Magnesium/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Complex Mixtures/chemistry , Isomerism , Molecular Structure
17.
Nat Commun ; 12(1): 319, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436611

ABSTRACT

Neural networks trained by backpropagation have achieved tremendous successes on numerous intelligent tasks. However, naïve gradient-based training and updating methods on memristors impede applications due to intrinsic material properties. Here, we built a 39 nm 1 Gb phase change memory (PCM) memristor array and quantified the unique resistance drift effect. On this basis, spontaneous sparse learning (SSL) scheme that leverages the resistance drift to improve PCM-based memristor network training is developed. During training, SSL regards the drift effect as spontaneous consistency-based distillation process that reinforces the array weights at the high-resistance state continuously unless the gradient-based method switches them to low resistance. Experiments show that the SSL not only helps the convergence of network with better performance and sparsity controllability without additional computation in handwritten digit classification. This work promotes the learning algorithms with the intrinsic properties of memristor devices, opening a new direction for development of neuromorphic computing chips.

18.
Article in English | MEDLINE | ID: mdl-33464033

ABSTRACT

Metal-organic frameworks (MOFs) constructed with mixed ligands have shown great promise in the generation of materials with improved sorption, optical, and electronic properties. With an experimental, spectroscopic, and computational approach, herein, we investigated how the incorporation of different functionalized ligands within the structure of MIL-125-NH2 affects its performance in photocatalytic water reduction. We found that multiligand incorporation within the MOF structure has an impact on the light absorption spectrum and the electronic structure. These combined modifications improve the photocatalytic performance of MIL-125-NH2, thereby increasing the rate of hydrogen evolution reaction. Of the four nanoparticle/MOF photocatalytic systems tested, we showed that the Pt/MIL-125-NH2/(OH)2 system (Pt nanoparticle plus MIL-125-NH2 with amino and dihydroxyl functionalized ligands) outperforms its counterpart Pt/MIL-125-NH2 system, attributed to the enhanced p-π conjugation between the lone pairs of O atoms and their aromatic ligands resulting in a red-shifted absorption spectrum and greater spatial distribution of electron density.

19.
Nature ; 592(7852): 86-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33473216

ABSTRACT

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Subject(s)
Action Potentials/physiology , Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Thalamus/anatomy & histology , Thalamus/cytology , Thalamus/physiology , Visual Cortex/cytology
20.
J Musculoskelet Neuronal Interact ; 20(4): 541-548, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33265082

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate the difference in back extensor muscle endurance before and after kinesiology tape application to all back stabilizer muscles and to the erector spinae alone. METHODS: We assessed 32 adults (16 men and 16 women), randomly divided into two groups. In the erector spinae taping (EST) group, kinesiology tape was applied only to the erector spinae, and in the total muscle taping (TMT) group, kinesiology tape was applied to the erector spinae, latissimus dorsi, lower trapezius, internal oblique abdominis, and external oblique abdominis. RESULTS: Both groups showed significant difference in terms of back extensor muscle endurance after kinesiology tape application (p<0.05). Between-group comparison revealed that the TMT group had more back extensor muscle endurance than the EST group (p<0.05) after kinesiology tape application. CONCLUSIONS: These findings indicate that, to improve back extensor muscle endurance, kinesiology tape should be applied to all back stabilizer muscles, rather than to the erector spinae muscles alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...