Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Med Phys ; 48(11): 7493-7503, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34482556

ABSTRACT

PURPOSE: The safety and clinical efficacy of 125 I seed-loaded stent for the treatment of portal vein tumor thrombosis (PVTT) have been shown. Accurate and fast dose calculation of the 125 I seeds with the presence of the stent is necessary for the plan optimization and evaluation. However, the dosimetric characteristics of the seed-loaded stents remain unclear and there is no fast dose calculation technique available. This paper aims to explore a fast and accurate analytical dose calculation method based on Monte Carlo (MC) dose calculation, which takes into account the effect of stent and tissue inhomogeneity. METHODS: A detailed model of the seed-loaded stent was developed using 3D modeling software and subsequently used in MC simulations to calculate the dose distribution around the stent. The dose perturbation caused by the presence of the stent was analyzed, and dose perturbation kernels (DPKs) were derived and stored for future use. Then, the dose calculation method from AAPM TG-43 was adapted by integrating the DPK and appropriate inhomogeneity correction factors (ICF) to calculate dose distributions analytically. To validate the proposed method, several comparisons were performed with other methods in water phantom and voxelized CT phantoms for three patients. RESULTS: The stent has a considerable dosimetric effect reducing the dose up to 47.2% for single-seed stent and 11.9%-16.1% for 16-seed stent. In a water phantom, dose distributions from MC simulations and TG-43-DP-ICF showed a good agreement with the relative error less than 3.3%. In voxelized CT phantoms, taking MC results as the reference, the relative errors of TG-43 method can be up to 33%, while those of TG-43-DP-ICF method were less than 5%. For a dose matrix with 256 × 256 × 46 grid (corresponding to a phantom of 17.2 × 17.2 × 11.5 cm3 ) for 16-seed-loaded stent, it only takes 17 s for TG-43-DP-ICF to compute, compared to 25 h for the full MC calculation. CONCLUSIONS: The combination of DPK and inhomogeneity corrections is an effective approach to handle both the presence of stent and tissue heterogeneity. Exhibiting good agreement with MC calculation and computational efficiency, the proposed TG-43-DP-ICF method is adequate for dose evaluation and optimization in seed-loaded stent implantation treatment planning.


Subject(s)
Brachytherapy , Radiometry , Algorithms , Humans , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Stents
2.
Phys Med ; 66: 1-7, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31563726

ABSTRACT

PURPOSE: To investigate the dosimetry of 125I seed-loaded stent system currently used for an adjuvant treatment of portal vein tumor thrombosis (PVTT). METHODS: The stent system consisted of an inner metallic stent and outer seed-loaded capsules. Four arrays of 125I seeds were attached longitudinally to the outer surface of the stent at 90° separation. 145 Gy was prescribed at 5 mm from the axes of seed-arrays. For the geometries of the 4-array, and potential 6- and 8-array configurations, treatment planning system (TPS) and Monte Carlo (MC) calculations were performed to evaluate 3D dose distributions and dosimetric impact of the metallic stent. RESULTS: The MC simulations indicated the metallic stent reduced a dose to the prescription points by over 10%, compared to the water-based TPS results. The total activity calculated by the water-based TPS to deliver the prescription dose should compensate for this amount of reduction. The MC- and TPS-calculated doses normalized to the prescription points for the current configuration were in agreements within 4.3% on a cylindrical surface along 5 mm from the axes of seed-arrays. The longitudinal underdosage worsened as approaching the edge of arrays, and ranged from 2.8% to 25.5%. The angular underdosage between neighboring arrays was 2.1%-8.9%. CONCLUSIONS: With this compensation and a special care of near-edge underdosage, the current 4-array system can provide adequate dose coverage for treatment of PVTT. Further dosimetric homogeneity can be achieved using 6-or 8-array configurations.


Subject(s)
Iodine Radioisotopes/therapeutic use , Portal Vein/radiation effects , Radiation Dosage , Stents , Thrombosis/radiotherapy , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL