Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biol Interact ; 395: 111006, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38636792

ABSTRACT

Members of the Signal Peptide-Peptidase (SPP) and Signal Peptide-Peptidase-like (SPPL) family are intramembrane aspartyl-proteases like their well-studied homologs, the presenilins, which comprise the catalytically active subunit within the γ-secretase complex. The lack of in vitro cleavage assays for SPPL proteases limited their biochemical characterization as well as substrate identification and validation. So far, SPPL proteases have been analyzed exclusively in intact cells or membranes, restricting mechanistic analysis to co-expression of enzyme and substrate variants colocalizing in the same subcellular compartments. We describe the details of developing an in vitro cleavage assay for SPPL2b and its model substrate TNFα and analyzed the influence of phospholipids, detergent supplements, and cholesterol on the SPPL2b in vitro activity. SPPL2b in vitro activity resembles mechanistic principles that have been observed in a cellular context, such as cleavage sites and consecutive turnover of the TNFα transmembrane domain. The novel in vitro cleavage assay is functional with separately isolated protease and substrate and amenable to a high throughput plate-based readout overcoming previous limitations and providing the basis for studying enzyme kinetics, catalytic activity, substrate recognition, and the characteristics of small molecule inhibitors. As a proof of concept, we present the first biochemical in vitro characterization of the SPPL2a and SPPL2b specific small molecule inhibitor SPL-707.


Subject(s)
Aspartic Acid Endopeptidases , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Humans , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Substrate Specificity , Proteolysis , Kinetics , Cholesterol/metabolism
2.
Exp Eye Res ; 123: 8-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24768597

ABSTRACT

Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/pathogenicity , Keratitis, Herpetic/virology , Virus Replication/drug effects , Animals , Aspirin/pharmacology , Carbamates/pharmacology , Cell Fractionation , Cells, Cultured , DNA, Viral/genetics , Dipeptides/pharmacology , Disease Models, Animal , Female , Gene Expression Regulation, Viral/physiology , Herpesvirus 1, Human/genetics , Ibuprofen/pharmacology , Keratitis, Herpetic/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ophthalmic Solutions , RNA, Messenger/metabolism , Rabbits , Real-Time Polymerase Chain Reaction , Skin/cytology , Skin/virology
SELECTION OF CITATIONS
SEARCH DETAIL