Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Dev Cell ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39321809

ABSTRACT

To organize microtubules, cells tightly control the activity of the microtubule nucleator γ-tubulin ring complex (γTuRC). The open ring-shaped γTuRC was proposed to nucleate microtubules by a template mechanism. However, its splayed structure does not match microtubule symmetry, leaving it unclear how γTuRC becomes an efficient nucleator. Here, we identify the mechanism of γTuRC activation by CDK5RAP2 centrosomin motif 1 (CM1). Using cryoelectron microscopy (cryo-EM), we find that activation involves binding of multiple CM1 dimers to five distinct sites around the outside of the γTuRC cone, which crucially depends on regulatory modules formed by MZT2 and the N-terminal extensions of GCP2 subunits. CM1 binding promotes lateral interactions between GCP subunits to facilitate microtubule-like conformations and release of luminal actin that is integral to non-activated γTuRC. We propose a model where generation of γTuRC with an expanded conformational range, rather than perfect symmetry, is sufficient to boost nucleation activity.

2.
bioRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826480

ABSTRACT

One of the defining features of apicomplexan parasites is their cytoskeleton composed of alveolar vesicles, known as the inner membrane complex (IMC) undergirded by intermediate-like filament network and an array of subpellicular microtubules (SPMTs). In Toxoplasma gondii, this specialized cytoskeleton is involved in all aspects of the disease-causing lytic cycle, and notably acting as a scaffold for parasite offspring in the internal budding process. Despite advances in our understanding of the architecture and molecular composition, insights pertaining to the coordinated assembly of the scaffold are still largely elusive. Here, T. gondii tachyzoites were dissected by advanced, iterative expansion microscopy (pan-ExM) revealing new insights into the very early sequential formation steps of the tubulin scaffold. A comparative study of the related parasite Sarcocystis neurona revealed that different MT bundling organizations of the nascent SPMTs correlate with the number of central and basal alveolar vesicles. In absence of a so far identified MT nucleation mechanism, we genetically dissected T. gondii γ-tubulin and γ-tubulin complex protein 4 (GCP4). While γ-tubulin depletion abolished the formation of the tubulin scaffold, a set of MTs still formed that suggests SPMTs are nucleated at the outer core of the centrosome. Depletion of GCP4 interfered with the correct assembly of SPMTs into the forming daughter buds, further indicating that the parasite utilizes the γ-tubulin complex in tubulin scaffold formation .

3.
J Cell Sci ; 137(9)2024 05 01.
Article in English | MEDLINE | ID: mdl-38606636

ABSTRACT

Microtubules are nucleated by γ-tubulin ring complexes (γ-TuRCs) and are essential for neuronal development. Nevertheless, γ-TuRC depletion has been reported to perturb only higher-order branching in elaborated Drosophila larval class IV dendritic arborization (da) neurons. This relatively mild phenotype has been attributed to defects in microtubule nucleation from Golgi outposts, yet most Golgi outposts lack associated γ-TuRCs. By analyzing dendritic arbor regrowth in pupae, we show that γ-TuRCs are also required for the growth and branching of primary and secondary dendrites, as well as for higher-order branching. Moreover, we identify the augmin complex (hereafter augmin), which recruits γ-TuRCs to the sides of pre-existing microtubules, as being required predominantly for higher-order branching. Augmin strongly promotes the anterograde growth of microtubules in terminal dendrites and thus terminal dendrite stability. Consistent with a specific role in higher-order branching, we find that augmin is expressed less strongly and is largely dispensable in larval class I da neurons, which exhibit few higher-order dendrites. Thus, γ-TuRCs are essential for various aspects of complex dendritic arbor development, and they appear to function in higher-order branching via the augmin pathway, which promotes the elaboration of dendritic arbors to help define neuronal morphology.


Subject(s)
Dendrites , Drosophila Proteins , Microtubules , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Dendrites/metabolism , Microtubules/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Tubulin/metabolism , Larva/metabolism , Larva/growth & development , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila/metabolism
4.
Elife ; 122023 09 22.
Article in English | MEDLINE | ID: mdl-37737843

ABSTRACT

The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.


Subject(s)
Carcinogenesis , Microtubule-Organizing Center , Animals , Mice , Basal Bodies , Cell Differentiation , Cell Transformation, Neoplastic , Hyperplasia
5.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Article in English | MEDLINE | ID: mdl-37482516

ABSTRACT

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Subject(s)
Microtubule-Associated Proteins , Tubulin , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Tubulin/genetics , Tubulin/metabolism , Microtubules/genetics , Microtubules/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Microtubule-Organizing Center/metabolism
6.
Front Cell Dev Biol ; 10: 880761, 2022.
Article in English | MEDLINE | ID: mdl-36158181

ABSTRACT

Microtubules composed of αß-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.

7.
IBRO Neurosci Rep ; 13: 264-273, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36164503

ABSTRACT

The centrosome lacks microtubule (MT)-nucleation activity in differentiated neurons. We have previously demonstrated that MTs were nucleated at the cytoplasm of mouse neurons. They are supposed to serve seeds for MTs required for dendrite growth. However, the factors that activate the cytoplasmic γ-tubulin ring complex (γTuRC) are unknown. Here we report an alternative splicing isoform of cyclin-dependent kinase 5 regulatory subunit-associated protein 2 (CKD5RAP2) as a candidate for the cytoplasmic γTuRC activator. This isoform lacked exon 17 and was expressed predominantly in the brain and testis. The expression was transient during the development of cortical neurons, which period coincided with the period we reported cytoplasmic MT nucleation. This isoform resulted in a frameshift and generated truncated protein without a centrosomal localization signal. When this isoform was expressed in cells, it localized diffusely in the cytoplasm. It was co-immunoprecipitated with γ-tubulin and MOZART2, suggesting that it can activate cytosolic γTuRCs. After cold-nocodazole depolymerization of MTs and subsequent washout, we observed numerous short MTs in the cytoplasm of cells transfected with the cDNA of this isoform. The isoform-overexpressing cells exhibited an increased amount of MTs and a decreased ratio of acetylated tubulin, suggesting that MT generation and turnover were enhanced by the isoform. Our data suggest the possibility that alternative splicing of CDK5RAP2 induces cytoplasmic nucleation of MTs in developing neurons.

8.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35759800

ABSTRACT

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Subject(s)
Microtubule-Organizing Center , Spindle Apparatus , Humans , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
9.
Front Cell Dev Biol ; 9: 727264, 2021.
Article in English | MEDLINE | ID: mdl-34660584

ABSTRACT

Microtubule nucleation in eukaryotes is primarily promoted by γ-tubulin and the evolutionary conserved protein complex, γ-Tubulin Ring Complex (γ-TuRC). γ-TuRC is part of the centrosome and basal body, which are the best-known microtubule-organizing centers. Centrosomes undergo intensive and dynamic changes during spermatogenesis, as they turn into basal bodies, a prerequisite for axoneme formation during spermatogenesis. Here we describe the existence of a novel, tissue-specific γ-TuRC in Drosophila. We characterize three genes encoding testis-specific components of γ-TuRC (t-γ-TuRC) and find that presence of t-γ-TuRC is essential to male fertility. We show the diverse subcellular distribution of the t-γ-TuRC proteins during post-meiotic development, at first at the centriole adjunct and then also on the anterior tip of the nucleus, and finally, they appear in the tail region, close to the mitochondria. We also prove the physical interactions between the t-γ-TuRC members, γ-tubulin and Mozart1. Our results further indicate heterogeneity in γ-TuRC composition during spermatogenesis and suggest that the different post-meiotic microtubule organizing centers are orchestrated by testis-specific gene products, including t-γ-TuRC.

10.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34328180

ABSTRACT

Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.


Subject(s)
Aspergillus nidulans , Microtubule-Organizing Center , Animals , Aspergillus nidulans/genetics , Centrosome , Microtubule-Associated Proteins/genetics , Microtubules , Spindle Apparatus , Spindle Pole Bodies , Tubulin
11.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34283237

ABSTRACT

Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.


Subject(s)
Centrioles , Tubulin , Bandages , Centrosome , Humans , Microtubules , Toes
12.
Open Biol ; 11(2): 200325, 2021 02.
Article in English | MEDLINE | ID: mdl-33529551

ABSTRACT

Cryo-electron microscopy recently resolved the structure of the vertebrate γ-tubulin ring complex (γ-TuRC) purified from Xenopus laevis egg extract and human cells to near-atomic resolution. These studies clarified the arrangement and stoichiometry of γ-TuRC components and revealed that one molecule of actin and the small protein MZT1 are embedded into the complex. Based on this structural census of γ-TuRC core components, we developed a recombinant expression system for the reconstitution and purification of human γ-TuRC from insect cells. The recombinant γ-TuRC recapitulates the structure of purified native γ-TuRC and has similar functional properties in terms of microtubule nucleation and minus end capping. This recombinant system is a central step towards deciphering the activation mechanisms of the γ-TuRC and the function of individual γ-TuRC core components.


Subject(s)
Tubulin/chemistry , Animals , Humans , Microtubules/chemistry , Microtubules/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Single Molecule Imaging , Spodoptera , Swine , Tubulin/metabolism , Xenopus
13.
Curr Opin Cell Biol ; 68: 124-131, 2021 02.
Article in English | MEDLINE | ID: mdl-33190097

ABSTRACT

Microtubules are essential cytoskeletal elements assembled from αß-tubulin dimers. In high eukaryotes, microtubule nucleation, the de novo assembly of a microtubule from its minus end, is initiated by the γ-tubulin ring complex (γ-TuRC). Despite many years of research, the structural and mechanistic principles of the microtubule nucleation machinery remained poorly understood. Only recently, cryoelectron microscopy studies uncovered the molecular organization and potential activation mechanisms of γ-TuRC. In vitro assays further deciphered the spatial and temporal cooperation between γ-TuRC and additional factors, for example, the augmin complex, the phase separation protein TPX2, and the microtubule polymerase XMAP215. These breakthroughs deepen our understanding of microtubule nucleation mechanisms and will link the assembly of individual microtubules to the organization of cellular microtubule networks.


Subject(s)
Microtubule-Organizing Center/chemistry , Microtubules/chemistry , Tubulin/chemistry , Animals , Cryoelectron Microscopy , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/ultrastructure , Microtubule-Organizing Center/metabolism , Microtubule-Organizing Center/ultrastructure , Microtubules/metabolism , Microtubules/ultrastructure , Polymerization , Tubulin/metabolism , Tubulin/ultrastructure
14.
Elife ; 92020 07 13.
Article in English | MEDLINE | ID: mdl-32657271

ABSTRACT

A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center (MTOC), which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.


Subject(s)
Caenorhabditis elegans/growth & development , Dendrites/metabolism , Growth Cones/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Animals , Caenorhabditis elegans/metabolism
15.
Cell Rep ; 31(13): 107836, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32610137

ABSTRACT

How γ-tubulin ring complex (γ-TuRC), a master template for microtubule nucleation, is spatially and temporally regulated for the assembly of new microtubule arrays remains unclear. Here, we report that an evolutionarily conserved microprotein, Mozart1 (Mzt1), regulates subcellular targeting and microtubule formation activity of γ-TuRC at different cell cycle stages. Crystal structures of protein complexes demonstrate that Mzt1 promiscuously interacts with the N-terminal domains of multiple γ-tubulin complex protein subunits in γ-TuRC via an intercalative binding mode. Genetic- and microscopy-based analyses show that promiscuous binding of Mzt1 in γ-TuRC controls specific subcellular localization of γ-TuRC to modulate microtubule nucleation and stabilization in fission yeast. Moreover, we find Mzt1-independent targeting of γ-TuRC to be crucial for mitotic spindle assembly, demonstrating the cell-cycle-dependent regulation and function of γ-TuRC. Our findings reveal a microprotein-mediated regulatory mechanism underlying microtubule cytoskeleton formation, whereby Mzt1 binding promiscuity confers localization specificity on the multi-protein complex γ-TuRC.


Subject(s)
Evolution, Molecular , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Multiprotein Complexes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Tubulin/metabolism , Conserved Sequence , Humans , Interphase , Microtubule-Associated Proteins/chemistry , Microtubule-Organizing Center/metabolism , Mitosis , Models, Biological , Protein Binding , Protein Domains , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/chemistry , Sequence Deletion , Solutions , Spindle Pole Bodies/metabolism , Subcellular Fractions/metabolism
16.
Dev Cell ; 53(5): 603-617.e8, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32433913

ABSTRACT

The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. The mechanism of its regulation is not understood. We purified human γTuRC and measured its nucleation properties in a total internal reflection fluorescence (TIRF) microscopy-based real-time nucleation assay. We find that γTuRC stably caps the minus ends of microtubules that it nucleates stochastically. Nucleation is inefficient compared with microtubule elongation. The 4 Å resolution cryoelectron microscopy (cryo-EM) structure of γTuRC, combined with crosslinking mass spectrometry analysis, reveals an asymmetric conformation with only part of the complex in a "closed" conformation matching the microtubule geometry. Actin in the core of the complex, and MZT2 at the outer perimeter of the closed part of γTuRC appear to stabilize the closed conformation. The opposite side of γTuRC is in an "open," nucleation-incompetent conformation, leading to a structural asymmetry explaining the low nucleation efficiency of purified human γTuRC. Our data suggest possible regulatory mechanisms for microtubule nucleation by γTuRC closure.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Tubulin/chemistry , Actins/chemistry , Actins/metabolism , Cryoelectron Microscopy , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Microtubules/metabolism , Molecular Dynamics Simulation , Protein Conformation , Single Molecule Imaging , Tubulin/metabolism
17.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31630790

ABSTRACT

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Subject(s)
Genetic Variation/genetics , Lissencephaly/genetics , Microcephaly/genetics , Microtubule-Associated Proteins/genetics , Alleles , Brain/metabolism , Cell Movement/genetics , Child , Exome/genetics , Female , Homozygote , Humans , Male , Microtubules/genetics , Nervous System Malformations/genetics , Neurons/metabolism , Phenotype , Tubulin/genetics
18.
Front Mol Neurosci ; 12: 126, 2019.
Article in English | MEDLINE | ID: mdl-31178691

ABSTRACT

The centrosomal protein γ-tubulin complex protein 3 (Tubgcp3/GCP3) is required for the assembly of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs), which play critical roles in mitotic spindle formation during mitosis. However, its function in vertebrate embryonic development is unknown. Here, we generated the zebrafish tubgcp3 mutants using the CRISPR/Cas9 system and found that the tubgcp3 mutants exhibited the small eye phenotype. Tubgcp3 is required for the cell cycle progression of retinal progenitor cells (RPCs), and its depletion caused cell cycle arrest in the mitotic (M) phase. The M-phase arrested RPCs exhibited aberrant monopolar spindles and abnormal distributed centrioles and γ-tubulin. Moreover, these RPCs underwent apoptosis finally. Our study provides the in vivo model for the functional study of Tubgcp3 and sheds light on the roles of centrosomal γ-tubulin complexes in vertebrate development.

19.
New Phytol ; 222(4): 1705-1718, 2019 06.
Article in English | MEDLINE | ID: mdl-30681146

ABSTRACT

Contents Summary I. Introduction II. MT arrays in plant cells III. γ-Tubulin and MT nucleation IV. MT nucleation sites or flexible MTOCs in plant cells V. MT-dependent MT nucleation VI. Generating new MTs for spindle assembly VII. Generation of MTs for phragmoplast expansion during cytokinesis VIII. MT generation for the cortical MT array IX. MT nucleation: looking forward Acknowledgements References SUMMARY: Cytoskeletal microtubules (MTs) have a multitude of functions including intracellular distribution of molecules and organelles, cell morphogenesis, as well as segregation of the genetic material and separation of the cytoplasm during cell division among eukaryotic organisms. In response to internal and external cues, eukaryotic cells remodel their MT network in a regulated manner in order to assemble physiologically important arrays for cell growth, cell proliferation, or for cells to cope with biotic or abiotic stresses. Nucleation of new MTs is a critical step for MT remodeling. Although many key factors contributing to MT nucleation and organization are well conserved in different kingdoms, the centrosome, representing the most prominent microtubule organizing centers (MTOCs), disappeared during plant evolution as angiosperms lack the structure. Instead, flexible MTOCs may emerge on the plasma membrane, the nuclear envelope, and even organelles depending on types of cells and organisms and/or physiological conditions. MT-dependent MT nucleation is particularly noticeable in plant cells because it accounts for the primary source of MT generation for assembling spindle, phragmoplast, and cortical arrays when the γ-tubulin ring complex is anchored and activated by the augmin complex. It is intriguing what proteins are associated with plant-specific MTOCs and how plant cells activate or inactivate MT nucleation activities in spatiotemporally regulated manners.


Subject(s)
Centrosome/metabolism , Microtubules/metabolism , Plant Cells/metabolism , Microtubule-Organizing Center/metabolism , Spindle Apparatus/metabolism , Tubulin/metabolism
20.
Mech Dev ; 154: 145-152, 2018 12.
Article in English | MEDLINE | ID: mdl-30426927

ABSTRACT

The centrosomal protein γ-tubulin is part of the cytoplasmic γ-tubulin small (γ-TuSCs) and large complexes (γ-TuRCs). Both, molecular and cellular evidence indicate that γ-tubulin plays a central role in microtubule nucleation and mitotic spindle formation. However, the molecular mechanisms of complex formation and subsequent biological roles in animal development remain unclear. Here, we used γ-tubulin gene knockdown in the zebrafish early embryo model to gain insights into its activity and cellular contribution during vertebrate embryogenesis. γ-Tubulin loss-of-function impaired γ-TuSC formation, impacting the microtubule nucleation rate in vitro. Moreover, decreased γ-tubulin synthesis caused dramatic defects in nuclear dynamics and cell cycle progression, leading to developmental arrest at the mid-gastrula stage. At the subcellular level, microtubule organization and function were altered, affecting chromosome segregation and triggering cell proliferation arrest and apoptosis. Our results suggest that de novo translated γ-tubulin participates in γ-TuSC formation required for early animal development. Importantly, formation of this complex is essential for both centrosome assembly and function, and cell proliferation. Thus, γ-TuSC integrity appears to be critical for cell cycle progression, and concomitantly, for coordinating the many distinct activities carried out by the early embryo. Our findings identify a novel role for γ-TuSC in the regulation of early vertebrate embryogenesis, providing molecular and biochemical starting points for future in depth studies of γ-tubulin functionality and its specific role in development.


Subject(s)
Embryonic Development/physiology , Tubulin/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Apoptosis/physiology , Cell Cycle/physiology , Cell Nucleus/metabolism , Cell Proliferation/physiology , Cytoplasm/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL