Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748759

ABSTRACT

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Subject(s)
Acetyl-CoA Carboxylase , Herbicide Resistance , Herbicides , Plant Proteins , Poaceae , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Poaceae/genetics , Poaceae/metabolism , Poaceae/drug effects , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mutation , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673998

ABSTRACT

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Subject(s)
Gene Expression Regulation, Plant , Pinus , Plant Proteins , Turpentine , Abscisic Acid/metabolism , Acetates/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll/biosynthesis , Chlorophyll A/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Pinus/genetics , Pinus/metabolism , Pinus/parasitology , Pinus/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Terpenes/metabolism , Turpentine/chemistry , Turpentine/metabolism
3.
ACS Infect Dis ; 10(4): 1312-1326, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38513073

ABSTRACT

New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.


Subject(s)
Acetaldehyde/analogs & derivatives , Bacteria , Escherichia coli , Transferases , Anti-Bacterial Agents/chemistry , Pyruvates/metabolism
4.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376151

ABSTRACT

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Subject(s)
Acetaldehyde/analogs & derivatives , Anti-Infective Agents , Escherichia coli Infections , Pentosephosphates , Prodrugs , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Mice , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/pharmacology , Escherichia coli Infections/drug therapy , Uropathogenic Escherichia coli/metabolism
5.
Acta Pharmaceutica Sinica ; (12): 1059-1068, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978746

ABSTRACT

1-Deoxy-D-xylulose-5-phosphate synthase (DXS), the first key enzyme in 2-methyl-D-erythritol-4-phosphate (MEP) pathway, catalyzes the condensation of glyceraldehyde-3-phosphate with pyruvate to 1-deoxy-xylose-5-phosphate (DXP). In this study, PgDXS1, PgDXS2, and PgDXS3 genes were cloned from the root of Platycodon grandiflorum (P. grandiflorum). The open reading frame (ORF) of PgDXS1, PgDXS2, and PgDXS3 were 2 160, 2 208, and 2 151 bp in full length, encoding 719, 735, and 716 amino acids, respectively. Homologous alignment results showed a high identity of PgDXSs with DXS in Hevea brasiliensis, Datura stramonium and Stevia rebaudiana. The recombinant expression plasmids of pET-28a-PgDXSs were constructed and transformed into Escherichia coli (E. coli) BL21 (DE3) cells, and the induced proteins were successfully expressed. Subcellular localization results showed that PgDXS1 and PgDXS2 were mainly located in chloroplasts, and PgDXS3 was located in chloroplasts, nucleus and cytoplasm. The expression of three DXS genes in different tissues of two producing areas of P. grandiflorum were assayed via real-time fluorescence quantitative PCR, and the results showed that all of them were highly expressed in leaves of P. grandiflorum from Taihe. Under methyl jasmonate (MeJA) treatment, the expression levels of three PgDXS genes showed a trend of first decreasing and then increasing at different time points (3 - 48 h), and the activity of DXS showed a trend of first increasing and then decreasing in three tissues of P. grandiflorum. This study provides a reference for further elucidating the biological function of PgDXS in terpenoid synthesis pathway in P. grandiflorum.

6.
Acta Pharmaceutica Sinica ; (12): 2025-2032, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-887016

ABSTRACT

1-Deoxy-D-xylulose-5-phosphate synthase (DXS) is a rate-limiting enzyme involved in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for terpenoid precursor biosynthesis. DXS plays an essential role in glycyrrhizic acid (GA) biosynthesis. Based on our previous transcriptome study, there was a negative correlation between DXS expression and GA content. Therefore, we explored the regulatory role of DXS in GA biosynthesis using both gene overexpression and gene knockout in a hairy root culture system. DXS was cloned from Glycyrrhiza glabra L. (GenBank Accession No. MN158121). A plant binary expression vector pCA-DXS was constructed by a gene fusion method. The sgRNA sequence was designed based on the first exon of DXS to construct the gene editing vector pHSE-DXS. Hairy roots overexpressing or knocking out DXS were generated through an Agrobacterium-mediated method with licorice hypocotyls as explants. Wild-type hairy roots and negative control hairy roots containing empty plasmids were also evaluated. UPLC was used to determine the GA content in each licorice hairy root line. Results showed that the content of GA in the hairy root group knocking out DXS was significantly higher than that in the wild-type and negative control groups, while in the hairy root group overexpressing DXS was significantly lower, suggesting that DXS plays a negative role in GA biosynthesis. This study provides a foundation for determining the function of DXS in terpenoid metabolism and for further establishment of a molecular regulatory network of GA biosynthesis.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-777535

ABSTRACT

1-deoxy-D-xylulose-5-phosphate synthase2(DXS2) is the first key enzyme of the MEP pathway,which plays an important role in terpene biosynthesis of plants. According to the data of Swertia mussotii transcriptome, DXS2 gene(Gen Bank number MH535905) was cloned and named as Sm DXS2. The bioinformatics results showed that Sm DXS2 has no intron,with a 2 145 bp open reading frame encoding a polypeptide of 714 amino acids. They are belonging to 20 kinds of amino acids,and the most abundant amino acids include Ala,Gly and Trp. The predicted protein molecular weight was 76. 91 k Da and its theoretical isoelectric point(p I) was6. 5,which belonging to a hydrophilic protein. α-Helix and loop were the major motifs of predicted secondary structure of DXS2. The three function domains are TPP_superfamily,Transket_pyr_ superfamily and Transketolase_C superfamily,respectively. The Sm DXS2 protein shared high identity with other DXS2 proteins of plants. Phylogenetic analysis showed that Sm DXS2 protein is grouped with the gentian DXS2 protein. The recombinant protein of Sm DXS2 gene in Escherichia coli was approximately 92. 00 k Da(containing sumo-His tag protein 13 k Da),which was consistent with the anticipated size.This work will provide a foundation for further functional research of Sm DXS2 protein and increasing the product of iridoid compound by genetic engineering in S. mussotii.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , DNA, Complementary , Genetics , Genes, Plant , Iridoids , Phylogeny , Plant Proteins , Genetics , Swertia , Genetics , Transcriptome , Transferases , Genetics
8.
Acta Pharmaceutica Sinica B ; (6): 458-465, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-690893

ABSTRACT

is famous for its important therapeutic effects. Saponins are bioactive compounds found in different parts and developmental stages of plants. Thus, it is urgently to study saponins distribution in different parts and growth ages of plants. In this study, potential biomarkers were found, and their chemical characteristic differences were revealed through metabolomic analysis. High-performance liquid chromatography data indicated the higher content of saponins (, Rg1, Re, Rd, and Rb1) in the underground parts than that in the aerial parts. 20()-Protopanaxadiol saponins were mainly distributed in the aerial parts. Additionally, the total saponin content in the 3-year-old plant (188.0 mg/g) was 1.4-fold higher than that in 2-year-old plant (130.5 mg/g). The transcriptomic analysis indicated the tissue-specific transcription expression of genes, namely, , , , , and , which encoded critical synthases in saponin biosyntheses. These genes showed similar expression patterns among the parts of plants. The expression levels of these genes in the flowers and leaves were 5.2fold higher than that in the roots and fibrils. These results suggested that saponins might be actively synthesized in the aerial parts and transformed to the underground parts. This study provides insights into the chemical and genetic characteristics of to facilitate the synthesis of its secondary metabolites and a scientific basis for appropriate collection and rational use of this plant.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-854545

ABSTRACT

Objective: To clone the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) gene from Houttuynia cordata and to analyze the expression difference. Methods: The cloning primers were designed based on the transcriptome dataset of H. cordata, one unique sequence encoding DXS1 was discovered. The sequence of DXS1 was cloned from H. cordata by RT-PCR. The physicochemical properties, secondary structure, and three-dimensional structure of the DXS1 protein were forecasted and analyzed, and its structure and function were predicted. And the different expression levels of DXS1 gene in rhizome, stems, leaves, and flowers were analyzed by fluorescent quantitative PCR. Results: The cDNA (named as DXS1) contains a 2 172 bp open reading frame and encodes a predicted protein of 723 amino acids. No transmembrane region and signal peptide were present in DXS1. The conserved domain of DXS was present in DXS1. Relative real-time PCR analysis indicated that DXS1 showed the highest transcript abundance in the flowers, moderate level in the leaves, lower level in the rhizomes, and the lowest level in the stems. Conclusion: This study cloned the DXS1 gene from H. cordata for the first time. The results will lay a foundation for exploring the mechanism of terpenoid biosynthesis in H. cordata plants.

SELECTION OF CITATIONS
SEARCH DETAIL