Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Ginseng Res ; 46(4): 536-542, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35818428

ABSTRACT

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 µg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 µg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

2.
Acta Pharm Sin B ; 12(5): 2374-2390, 2022 May.
Article in English | MEDLINE | ID: mdl-35646533

ABSTRACT

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and ß-myosin heavy chain (ß-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

3.
Acta Pharmaceutica Sinica B ; (6): 2374-2390, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929392

ABSTRACT

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and β-myosin heavy chain (β-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

4.
Acta Pharm Sin B ; 11(10): 3015-3034, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729301

ABSTRACT

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.

5.
Acta Pharmaceutica Sinica B ; (6): 3015-3034, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-922781

ABSTRACT

Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERR

6.
Acta Pharm Sin B ; 10(1): 42-60, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31993306

ABSTRACT

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

7.
Acta Pharmaceutica Sinica B ; (6): 42-60, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-781551

ABSTRACT

The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of as well as experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.

8.
Acta Pharm Sin B ; 9(5): 1021-1034, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31649851

ABSTRACT

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death via apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in vivo in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

9.
J Adv Res ; 20: 9-21, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31193017

ABSTRACT

The efficacy of gemcitabine therapy is often insufficient for the treatment of pancreatic cancer. The current study demonstrated that LW6, a chemical inhibitor of hypoxia-inducible factor 1α, is a promising drug for enhancing the chemosensitivity to gemcitabine. LW6 monotherapy and the combination therapy of LW6 plus gemcitabine significantly inhibited cell proliferation and enhanced cell death in pancreatic cancer cells. This combination therapy also significantly reduced the tumor weight in a syngeneic orthotopic pancreatic carcinoma model without causing toxic side effects. In addition, this study provides insight into the mechanism of how LW6 interferes with the pathophysiology of pancreatic cancer. The results revealed that LW6 inhibited autophagic flux, which is defined by the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and p62/SQSTM1. Moreover, these results were verified by the analysis of a tandem RFP-GFP-tagged LC3 protein. Thence, for the first time, these data demonstrate that LW6 enhances the anti-tumor effects of gemcitabine and inhibits autophagic flux. This suggests that the combination therapy of LW6 plus gemcitabine may be a novel therapeutic strategy for pancreatic cancer patients.

10.
Acta Pharm Sin B ; 9(1): 144-156, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30766786

ABSTRACT

Natural product evodiamine and its derivatives represent a promising class of multi-target antitumor agents. However, the clinical development of these compounds has been hampered by a poor understanding of their antitumor mechanisms. To tackle this obstacle, herein, novel fluorescent probes were designed to elucidate the antitumor mode of action of 10-hydroxyevodiamine. This compound was proven to be distributed in the mitochondria and lysosomes and to act by autophagy and apoptosis mechanisms.

11.
Acta Pharmaceutica Sinica B ; (6): 144-156, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-774995

ABSTRACT

Natural product evodiamine and its derivatives represent a promising class of multi-target antitumor agents. However, the clinical development of these compounds has been hampered by a poor understanding of their antitumor mechanisms. To tackle this obstacle, herein, novel fluorescent probes were designed to elucidate the antitumor mode of action of 10-hydroxyevodiamine. This compound was proven to be distributed in the mitochondria and lysosomes and to act by autophagy and apoptosis mechanisms.

12.
Acta Pharmaceutica Sinica B ; (6): 1021-1034, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-774925

ABSTRACT

Polo-like kinase (PLK1) has been identified as a potential target for cancer treatment. Although a number of small molecules have been investigated as PLK1 inhibitors, many of which showed limited selectivity. PLK1 harbors a regulatory domain, the Polo box domain (PBD), which has a key regulatory function for kinase activity and substrate recognition. We report on 3-bromomethyl-benzofuran-2-carboxylic acid ethyl ester (designated: MCC1019) as selective PLK1 inhibitor targeting PLK1 PBD. Cytotoxicity and fluorescence polarization-based screening were applied to a library of 1162 drug-like compounds to identify potential inhibitors of PLK1 PBD. The activity of compound MC1019 against the PLK1 PBD was confirmed using fluorescence polarization and microscale thermophoresis. This compound exerted specificity towards PLK1 over PLK2 and PLK3. MCC1019 showed cytotoxic activity in a panel of different cancer cell lines. Mechanistic investigations in A549 lung adenocarcinoma cells revealed that MCC1019 induced cell growth inhibition through inactivation of AKT signaling pathway, it also induced prolonged mitotic arrest-a phenomenon known as mitotic catastrophe, which is followed by immediate cell death apoptosis and necroptosis. MCC1019 significantly inhibited tumor growth in a murine lung cancer model without affecting body weight or vital organ size, and reduced the growth of metastatic lesions in the lung. We propose MCC1019 as promising anti-cancer drug candidate.

13.
J Bone Oncol ; 5(2): 67-73, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27335774

ABSTRACT

Osteosarcoma (OS) responds poorly to radiotherapy, but the mechanism is unclear. We found OS tumor tissues expressed high level of protein HIF-1α, a common biological marker indicative of hypoxia. It is known that hypoxic cells are generally radioresistant because of reduced production of irradiation-induced DNA-damaging reactive oxygen species (ROS) in the anaerobic condition. Here we report another mechanism how hypoxia induces radioresistance. In MG-63 human osteosarcoma cells, hypoxic pretreatment increased the cellular survival in irradiation. These hypoxia-exposed cells displayed compartmental recruitment of GFP-tagged LC3 and expression of protein LC3-II, and restored the radiosensitivity upon autophagy inhibition. The following immunohistochemistry of OS tumor tissue sections revealed upregulated LC3 expression in a correlation with HIF-1α protein level, implying the possibly causative link between hypoxia and autophagy. Further studies in MG-63 cells demonstrated hypoxic pretreatment reduced cellular and mitochondrial ROS production during irradiation, while inhibition of autophagy re-elicited them. Taken together, our study suggests hypoxia can confer cells resistance to irradiation through activated autophagy to accelerate the clearance of cellular ROS products. This might exist in human osteosarcoma as an additional mechanism for radioresistance.

14.
Autophagy ; 11(7): 1037-51, 2015.
Article in English | MEDLINE | ID: mdl-26120888

ABSTRACT

Cadmium is one of the most toxic metal compounds found in the environment. It is well established that Cd induces hepatotoxicity in humans and multiple animal models. Melatonin, a major secretory product of the pineal gland, has been reported to protect against Cd-induced hepatotoxicity. However, the mechanism behind this protection remains to be elucidated. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10 µM) for 12 h. We found that Cd induced mitochondrial-derived superoxide anion-dependent autophagic cell death. Specifically, Cd decreased SIRT3 protein expression and activity and promoted the acetylation of SOD2, superoxide dismutase 2, mitochondrial, thus decreasing its activity, a key enzyme involved in mitochondrial ROS production, although Cd did not disrupt the interaction between SIRT3 and SOD2. These effects were ameliorated by overexpression of SIRT3. However, a catalytic mutant of SIRT3 (SIRT3(H248Y)) lacking deacetylase activity lost the capacity to suppress Cd-induced autophagy. Notably, melatonin treatment enhanced the activity but not the expression of SIRT3, decreased the acetylation of SOD2, inhibited mitochondrial-derived O2(•-) production and suppressed the autophagy induced by 10 µM Cd. Moreover, 3-(1H-1,2,3-triazol-4-yl)pyridine, a confirmed selective SIRT3 inhibitor, blocked the melatonin-mediated suppression of autophagy by inhibiting SIRT3-SOD2 signaling. Importantly, melatonin suppressed Cd-induced autophagic cell death by enhancing SIRT3 activity in vivo. These results suggest that melatonin exerts a hepatoprotective effect on mitochondrial-derived O2(•-)-stimulated autophagic cell death that is dependent on the SIRT3/SOD2 pathway.


Subject(s)
Autophagy/drug effects , Cadmium/toxicity , Melatonin/pharmacology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism , Acetylation/drug effects , Animals , Apoptosis/drug effects , Cytoprotection/drug effects , Hep G2 Cells , Humans , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/ultrastructure , Models, Biological , Pyridines/pharmacology , Superoxides/metabolism
15.
Autophagy ; 11(7): 995-1009, 2015.
Article in English | MEDLINE | ID: mdl-26043790

ABSTRACT

Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.


Subject(s)
Autophagy/drug effects , Cocaine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Microglia/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Adenine/pharmacology , Androstadienes/pharmacology , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 5 , Beclin-1 , Biomarkers/metabolism , Cell Line , Cell Survival/drug effects , Mice, Inbred C57BL , Microglia/drug effects , Microglia/ultrastructure , Models, Biological , Phagosomes/drug effects , Phagosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proteins/metabolism , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Time Factors , Wortmannin
16.
Autophagy ; 11(6): 906-17, 2015.
Article in English | MEDLINE | ID: mdl-25950899

ABSTRACT

Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed "cross-presentation." The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.


Subject(s)
Antigen Presentation/immunology , Autophagy/immunology , Cross-Priming/immunology , Dendritic Cells/metabolism , Animals , Dendritic Cells/immunology , Endocytosis/immunology , Endocytosis/physiology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Mice
17.
Autophagy ; 11(5): 833-43, 2015.
Article in English | MEDLINE | ID: mdl-25945953

ABSTRACT

Mitochondrial autophagy, also known as mitophagy, is an autophagosome-based mitochondrial degradation process that eliminates unwanted or damaged mitochondria after cell stress. Most studies dealing with mitophagy rely on the analysis by fluorescence microscopy of mitochondrial-autophagosome colocalization. However, given the fundamental role of mitophagy in the physiology and pathology of organisms, there is an urgent need for novel quantitative methods with which to study this process. Here, we describe a flow cytometry-based approach to determine mitophagy by using MitoTracker Deep Red, a widely used mitochondria-selective probe. Used in combination with selective inhibitors it may allow for the determination of mitophagy flux. Here, we test the validity of the use of this method in cell lines and in primary cell and tissue cultures.


Subject(s)
Flow Cytometry/methods , Mitophagy , Amino Acids/deficiency , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Disease Models, Animal , Down-Regulation/drug effects , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Flavonoids/pharmacology , Flavonols , HeLa Cells , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Niacinamide/pharmacology , Retina/drug effects , Retina/metabolism , Retinitis Pigmentosa/pathology
18.
Autophagy ; 11(5): 785-95, 2015.
Article in English | MEDLINE | ID: mdl-25946330

ABSTRACT

Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.


Subject(s)
Autophagy/drug effects , Histocompatibility Antigens Class II/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/cytology , Macrophages/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Epitopes/immunology , Ether-A-Go-Go Potassium Channels/metabolism , Hypercholesterolemia/immunology , Hypercholesterolemia/pathology , Immunoglobulin G/immunology , Intracellular Signaling Peptides and Proteins/deficiency , Lymphocyte Activation/immunology , Macrophages/drug effects , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 8 , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Oxidation-Reduction/drug effects , Protein-Tyrosine Kinases/deficiency , Proto-Oncogene Proteins c-bcl-2/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Syk Kinase , Up-Regulation/drug effects
19.
Autophagy ; 11(7): 975-94, 2015.
Article in English | MEDLINE | ID: mdl-26018731

ABSTRACT

Although RIPK1 (receptor [TNFRSF]-interacting protein kinase 1) is emerging as a critical determinant of cell fate in response to cellular stress resulting from activation of death receptors and DNA damage, its potential role in cell response to endoplasmic reticulum (ER) stress remains undefined. Here we report that RIPK1 functions as an important prosurvival mechanism in melanoma cells undergoing pharmacological ER stress induced by tunicamycin (TM) or thapsigargin (TG) through activation of autophagy. While treatment with TM or TG upregulated RIPK1 and triggered autophagy in melanoma cells, knockdown of RIPK1 inhibited autophagy and rendered the cells sensitive to killing by TM or TG, recapitulating the effect of inhibition of autophagy. Consistently, overexpression of RIPK1 enhanced induction of autophagy and conferred resistance of melanoma cells to TM- or TG-induced cell death. Activation of MAPK8/JNK1 or MAPK9/JNK2, which phosphorylated BCL2L11/BIM leading to its dissociation from BECN1/Beclin 1, was involved in TM- or TG-induced, RIPK1-mediated activation of autophagy; whereas, activation of the transcription factor HSF1 (heat shock factor protein 1) downstream of the ERN1/IRE1-XBP1 axis of the unfolded protein response was responsible for the increase in RIPK1 in melanoma cells undergoing pharmacological ER stress. Collectively, these results identify upregulation of RIPK1 as an important resistance mechanism of melanoma cells to TM- or TG-induced ER stress by protecting against cell death through activation of autophagy, and suggest that targeting the autophagy-activating mechanism of RIPK1 may be a useful strategy to enhance sensitivity of melanoma cells to therapeutic agents that induce ER stress.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Melanoma/enzymology , Melanoma/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Autophagy/drug effects , Bcl-2-Like Protein 11 , Beclin-1 , Cell Line, Tumor , Cell Survival/drug effects , Cytoprotection/drug effects , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heat Shock Transcription Factors , Humans , Melanoma/genetics , Membrane Proteins , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Models, Biological , Phosphorylation/drug effects , Proto-Oncogene Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Regulatory Factor X Transcription Factors , Thapsigargin/pharmacology , Transcription Factors/metabolism , Tunicamycin/pharmacology , Up-Regulation/drug effects , X-Box Binding Protein 1
20.
Autophagy ; 11(4): 607-16, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25906314

ABSTRACT

Primary cilium is an organelle that plays significant roles in a number of cellular functions ranging from cell mechanosensation, proliferation, and differentiation to apoptosis. Autophagy is an evolutionarily conserved cellular function in biology and indispensable for cellular homeostasis. Both cilia and autophagy have been linked to different types of genetic and acquired human diseases. Their interaction has been suggested very recently, but the underlying mechanisms are still not fully understood. We examined autophagy in cells with suppressed cilia and measured cilium length in autophagy-activated or -suppressed cells. It was found that autophagy was repressed in cells with short cilia. Further investigation showed that MTOR activation was enhanced in cilia-suppressed cells and the MTOR inhibitor rapamycin could largely reverse autophagy suppression. In human kidney proximal tubular cells (HK2), autophagy induction was associated with cilium elongation. Conversely, autophagy inhibition by 3-methyladenine (3-MA) and chloroquine (CQ) as well as bafilomycin A1 (Baf) led to short cilia. Cilia were also shorter in cultured atg5-knockout (KO) cells and in atg7-KO kidney proximal tubular cells in mice. MG132, an inhibitor of the proteasome, could significantly restore cilium length in atg5-KO cells, being concomitant with the proteasome activity. Together, the results suggest that cilia and autophagy regulate reciprocally through the MTOR signaling pathway and ubiquitin-proteasome system.


Subject(s)
Autophagy/physiology , Proteasome Endopeptidase Complex/metabolism , TOR Serine-Threonine Kinases/metabolism , Ubiquitin/metabolism , Animals , Autophagy/genetics , Cell Line , Cilia/genetics , Humans , Mice, Knockout , Proteasome Endopeptidase Complex/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL