Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
ACS Biomater Sci Eng ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026391

ABSTRACT

Transformation of a fibrous mat into a three-dimensional (3D) scaffold opens up abundant innovative prospects in biomedical research, particularly for studying both soft as well as hard tissues. Electrospun nanofibers, which mimic the extracellular matrix have attracted significant attention in various studies. This research focuses on rapidly converting a fibrous mat made of polycaprolactone (PCL)/pluronic F-127 (PF-127) with different percentages of monetite calcium phosphate (MCP) into desirable 3D matrix cotton using a unique gas foaming technology. These matrix cottons possess biomimetic properties and have oriented porous structures. Using this innovative technique, various shapes of 3D matrix cotton, such as squares, hollow tubes, and other customizable forms, were successfully produced. Importantly, these 3D matrix cottons showed a consistent distribution of monetite particles with total porosity ranging from 90% to 98%. The structure of the 3D matrix cotton, its water/blood absorption capacity, the potential for causing non-hemolysis, and rapid hemostatic properties were thoroughly investigated. Additionally, periodontal cells were cultured on the 3D matrix cotton to assess their viability and morphology, revealing promising results. Furthermore, a coculture study involving NIH-3T3 and MG-63 cells on the 3D matrix cotton showed spheroidal formation within 24 h. Notably, in vitro assessments indicated that the matrix cotton containing 15% monetite (PCL-MMC15%) exhibited superior absorbent capabilities, excellent cell viability, and rapid hemostatic characteristics. Subsequently, the effectiveness of PCL-MMC15% in promoting mandibular bone regeneration was evaluated through an in vivo study on rabbits using a mandibular injury model. The results demonstrated that PCL-MMC15% facilitated the resolution of defects in the mandibular region by initiating new bone formation. Therefore, the presented 3D matrix cotton (PCL-MMC15%) shows significant promise for applications in both mandibular bone regeneration and hemostasis.

2.
Carbohydr Polym ; 342: 122363, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048221

ABSTRACT

The tumor microenvironment (TME) orchestrates cellular and extracellular matrix (ECM) interactions, playing a key role in tumorigenesis, tumor growth, and metastization. Investigating the interplay between stromal-epithelial cells within the TME is paramount for understanding cancer mechanisms but demands reliable biological models. 3D-models have emerged as powerful in vitro tools, but many fall short in replicating cell-cell/cell-matrix interactions. This study introduces a novel hybrid 3D-model of the breast TME, combining epithelial cells, cancer-associated fibroblasts (CAFs), and their ECM. To build the stromal compartment, porous 3D-printed alginate scaffolds were seeded with CAFs, which proliferated and produced ECM. The pores were infused with oxidized peptide-modified alginate hydrogel laden with MCF10A cells, forming the parenchymal compartment. The hybrid system supported epithelial morphogenesis into acini surrounded by fibroblasts and ECM, and could be readily solubilized to recover cells, their matrix, and sequestered soluble factors. Proteome profiling of the retrieved ECM showed upregulation of proteins associated with matrix assembly/remodeling, epithelial-to-mesenchymal transition (EMT), and cancer. The TME-like microenvironment induced a partial EMT in MCF10A cells, generating a hybrid population with epithelial and mesenchymal features, characteristic of aggressive phenotypes. Our model provided new insights into epithelial-stromal interactions within the TME, offering a valuable tool for cancer research in a physiologically-relevant 3D setting.


Subject(s)
Alginates , Breast Neoplasms , Epithelial Cells , Extracellular Matrix , Tumor Microenvironment , Humans , Alginates/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Extracellular Matrix/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/drug effects , Stromal Cells/metabolism , Stromal Cells/drug effects , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Cell Culture Techniques, Three Dimensional/methods , Cell Line, Tumor , Cell Proliferation/drug effects
3.
J Colloid Interface Sci ; 672: 543-551, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38852355

ABSTRACT

Anode-free lithium metal batteries (AFLBs) have attracted considerable attention due to their high theoretical specific capacity and absence of Li. However, the heterogeneous Li deposition and stripping on the lithiophobic Cu collector hamper AFLBs in practice. To achieve a uniform and reversible Li deposition, a carbon-based layer on the Cu collector has attracted intense interest due to its high conductivity. However, the 2D single-component carbon-based interface is inadequate lithiophilic for obtaining the homogeneous Li deposition and preventing the lithium dendrite from piercing the separator. Herein, we present a 3D embedded lithiophilic SiO2 nanoparticles-graphene nanosheet matrix (SiO2@G-M) on the Cu collector by organic nano carbon source. In this structure, the lithiophilic SiO2 nanoparticles as active points promote the homogeneous lithium nucleation and the 3D graphene nanosheet matrix offers homogenous electron distribution and voids to prevent the piercing. Finally, SiO2@G-M/Li cell shows a high coulombic efficiency of 98.62 % after 100 cycles at a high current density of 2 mA cm-2 with an areal capacity of 1 mAh cm-2.

4.
Carbohydr Res ; 541: 109147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781716

ABSTRACT

The intricate nature of carbohydrates, particularly monosaccharides, stems from the existence of several chiral centers within their tertiary structures. Predicting and characterizing the molecular geometries and electrostatic landscapes of these substances is difficult due to their complex electrical properties. Moreover, these structures can display a substantial degree of conformational flexibility due to the presence of many rotatable bonds. Moreover, identifying and distinguishing between D and L enantiomers of monosaccharides presents a significant analytical obstacle since there is a need for empirically measurable properties that can distinguish them. This work uses Principal Component Analysis (PCA) to explore the chemical information included in 3D descriptors in order to comprehend the conformational space of d-Mannose stereoisomers. The isomers may be discriminated by utilizing 3D matrix-based indices, geometrical descriptors, and RDF descriptors. The isomers can be distinguished by descriptors, such as the Harary-like index from the reciprocal squared geometrical matrix (H_RG), Harary-like index from Coulomb matrix (H_Coulomb), Wiener-like index from Coulomb matrix (Wi_Coulomb), Wiener-like index from geometrical matrix (Wi_G), Graph energy from Coulomb matrix (SpAbs_Coulomb), Spectral absolute deviation from Coulomb matrix (SpAD_Coulomb), and Spectral positive sum from Coulomb matrix (SpPos_Coulomb). Among these descriptors, the first two, H_RG and H_Coulomb, perform the best in differentiation among the 3D-Matrix-Based Descriptors (3D-MBD) class. The results obtained from this study provide a significant chemical insight into the structural characteristics of the compounds inside the graph theoretical framework. These findings are likely to serve as the basis for developing new methods for analytical experiments.


Subject(s)
Mannose , Principal Component Analysis , Mannose/chemistry , Stereoisomerism , Carbohydrate Conformation , Models, Molecular
5.
J Maxillofac Oral Surg ; 23(1): 114-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312983

ABSTRACT

Purpose: To evaluate and compare the efficacy of three osteosynthesis systems in fixation of mandibular angle fractures using Finite Element Analysis. Materials and Methods: In this study, we used a three-dimensional finite element analysis to assess the stress, deformation and strain in three different groups with bite force loads. A three-dimensional finite element model of the mandible with three different plating techniques using modelling software 'Solidworks2018' and was analysed for stress, deformation and strain produced in the bone following biting loads of different magnitude using analysing software 'ANSYS Workbench'. Results: In this study, we found out that the tensile forces in the matrix miniplate with vertical struts were well distributed in the cortical and cancellous bone on comparison with other two fixation systems in fixation of the mandibular angle fracture and therefore prevents lateral displacement, torsion and bending. The matrix miniplate system revealed less displacement of the fracture segments as compared to the other two plating systems. Conclusion: The use of matrix miniplate for the treatment of mandibular angle fractures can be considered efficacious. The stress transferred onto the cortical & cancellous bone is least in the matrix plate leading to better stability of the fixation system.

6.
Front Cell Dev Biol ; 12: 1339251, 2024.
Article in English | MEDLINE | ID: mdl-38374894

ABSTRACT

During breast cancer progression, there is typically increased collagen deposition resulting in elevated extracellular matrix rigidity. This results in changes to cell-matrix adhesion and cell migration, impacting processes such as the epithelial-mesenchymal transition (EMT) and metastasis. We aim to investigate the roles of cell-matrix adhesion and cell migration on breast tumor growth and progression by studying the impacts of different types of extracellular matrices and their rigidities. We embedded MCF7 spheroids within three-dimensional (3D) collagen matrices and agarose matrices. MCF7 cells adhere to collagen but not agarose. Contrasting the results between these two matrices allows us to infer the role of cell-matrix adhesion. We found that MCF7 spheroids exhibited the fastest growth rate when embedded in a collagen matrix with a rigidity of 5.1 kPa (0.5 mg/mL collagen), whereas, for the agarose matrix, the rigidity for the fastest growth rate is 15 kPa (1.0% agarose) instead. This discrepancy is attributable to the presence of cell adhesion molecules in the collagen matrix, which initiates collagen matrix remodeling and facilitates cell migration from the tumor through the EMT. As breast tumors do not adhere to agarose matrices, it is suitable to simulate the cell-cell interactions during the early stage of breast tumor growth. We conducted further analysis to characterize the stresses exerted by the expanding spheroid on the agarose matrix. We identified two distinct MCF7 cell populations, namely, those that are non-dividing and those that are dividing, which exerted low and high expansion stresses on the agarose matrix, respectively. We confirmed this using Western blot which showed the upregulation of proliferating cell nuclear antigen, a proliferation marker, in spheroids grown in the 1.0% agarose (≈13 kPa). By treating the embedded MCF7 spheroids with an inhibitor or activator of myosin contractility, we showed that the optimum spheroids' growth can be increased or decreased, respectively. This finding suggests that tumor growth in the early stage, where cell-cell interaction is more prominent, is determined by actomyosin tension, which alters cell rounding pressure during cell division. However, when breast tumors begin generating collagen into the surrounding matrix, collagen remodeling triggers EMT to promote cell migration and invasion, ultimately leading to metastasis.

7.
Tissue Eng Part A ; 30(7-8): 314-329, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37725574

ABSTRACT

Mechano-rehabilitation, also known as mechanotherapy, represents the forefront of noninvasive treatment for musculoskeletal (MSK) tissue disorders, encompassing conditions affecting tendons, cartilage, ligaments, and muscles. Recent emphasis has underscored the significance of macrophage presence in the healing of MSK tissues. However, a considerable gap still exists in comprehending how mechanical strains associated with mechanotherapy impact both the naïve and pro-inflammatory macrophage phenotypes within the three-dimensional (3D) tissue matrix, as well as whether the shift in macrophage phenotype is contingent on the mechanical strains inherent to mechanotherapy. In this study, we delineated alterations in mechano-adaptation and polarization of both naive and M1 macrophages within 3D matrices, elucidating their response to varying degrees of mechanical strain exposure (3%, 6%, and 12%). To evaluate macrophage mechano-adaptation and mechano-sensitivity within 3D collagen matrices under mechanical loading, we employed structural techniques (scanning electron microscopy, histology), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time polymerase chain reaction. Our data reveal that the response of macrophages to mechanical loading is not only contingent on their specific sub-phenotype but also varies with the amplitude of mechanical strain. Notably, although supra-mechanical loading (12% strain) was requisite to induce a phenotypic shift in naive (M0) macrophages, as little as 3% mechanical strain proved sufficient to prompt phenotypic alterations in pro-inflammatory (M1) macrophages. These findings pave the way for leveraging the macrophage mechanome in customized and targeted applications of mechanical strain within the mechano-therapeutic framework. Considering the prevalence of MSK tissue injuries and their profound societal and economic implications, the development of well-informed and effective clinical mechanotherapy modalities for MSK tissue healing becomes an imperative endeavor. Impact statement Mechanotherapy is a primary noninvasive treatment for musculoskeletal (MSK) tissue injuries, but the effect of mechanical strain on macrophage phenotypes is not fully understood. A recent study found that macrophage response to mechanical loading is both sub-phenotype specific and amplitude-dependent, with even small strains enough to induce phenotypic changes in pro-inflammatory macrophages. These findings could pave the way for using macrophage mechanome in targeted mechanotherapy applications for better MSK tissue healing.


Subject(s)
Macrophages , Musculoskeletal System , Wound Healing , Collagen/pharmacology , Phenotype
8.
Bioengineering (Basel) ; 10(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38136028

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a refractory tumor with a poor prognosis, and its complex microenvironment is characterized by a fibrous interstitial matrix surrounding PDAC cells. Type I collagen is a major component of this interstitial matrix. Abundant type I collagen promotes its deposition and cross-linking to form a rigid and dense physical barrier, which limits drug penetration and immune cell infiltration and provides drug resistance and metabolic adaptations. In this study, to identify the physical effect of the stroma, type I collagen was used as a 3D matrix to culture Capan-1 cells and generate a 3D PDAC model. Using transcriptome analysis, a link between type I collagen-induced physical effects and the promotion of Capan-1 cell proliferation and migration was determined. Moreover, metabolomic analysis revealed that the physical effect caused a shift in metabolism toward a glycolytic phenotype. In particular, the high expression of proline in the metabolites suggests the ability to maintain Capan-1 cell proliferation under hypoxic and nutrient-depleted conditions. In conclusion, we identified type I collagen-induced physical effects in promoting Capan-1 cells, which cause PDAC progression, providing support for the role of dense stroma in the PDAC microenvironment and identifying a fundamental method for modeling the complex PDAC microenvironment.

9.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836285

ABSTRACT

Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix.

10.
Eur J Immunol ; 53(11): e2350505, 2023 11.
Article in English | MEDLINE | ID: mdl-37501396

ABSTRACT

Our work presents a high-throughput kinetic killing assay in the 3D matrix using high-content imaging that is a robust and powerful cytotoxicity assay for evaluating the killing efficiency of immune killer cells or conducting drug screening under physiologically and pathologically relevant scenarios, particularly in the context of solid tumors.


Subject(s)
High-Throughput Screening Assays , Neoplasms , Humans , High-Throughput Screening Assays/methods , Killer Cells, Natural
11.
Life (Basel) ; 13(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37109592

ABSTRACT

The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.

12.
SLAS Discov ; 28(4): 138-148, 2023 06.
Article in English | MEDLINE | ID: mdl-36934951

ABSTRACT

Central to the success of functional precision medicine of solid tumors is to perform drug testing of patient-derived cancer cells (PDCs) in tumor-mimicking ex vivo conditions. While high throughput (HT) drug screening methods have been well-established for cells cultured in two-dimensional (2D) format, this approach may have limited value in predicting clinical responses. Here, we describe the results of the optimization of drug sensitivity and resistance testing (DSRT) in three-dimensional (3D) growth supporting matrices in a HT mode (3D-DSRT) using the hepatocyte cell line (HepG2) as an example. Supporting matrices included widely used animal-derived Matrigel and cellulose-based hydrogel, GrowDex, which has earlier been shown to support 3D growth of cell lines and stem cells. Further, the sensitivity of ovarian cancer PDCs, from two patients included in the functional precision medicine study, was tested for 52 drugs in 5 different concentrations using 3D-DSRT. Shortly, in the optimized protocol, the PDCs are embedded with matrices and seeded to 384-well plates to allow the formation of the spheroids prior to the addition of drugs in nanoliter volumes with acoustic dispenser. The sensitivity of spheroids to drug treatments is measured with cell viability readout (here, 72 h after addition of drugs). The quality control and data analysis are performed with openly available Breeze software. We show the usability of both matrices in established 3D-DSRT, and report 2D vs 3D growth condition dependent differences in sensitivities of ovarian cancer PDCs to MEK-inhibitors and cytotoxic drugs. This study provides a proof-of-concept for robust and fast screening of drug sensitivities of PDCs in 3D-DSRT, which is important not only for drug discovery but also for personalized ex vivo drug testing in functional precision medicine studies. These findings suggest that comparing results of 2D- and 3D-DSRT is essential for understanding drug mechanisms and for selecting the most effective treatment for the patient.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Animals , Cell Line, Tumor , Antineoplastic Agents/pharmacology , High-Throughput Screening Assays/methods , Drug Discovery
13.
SLAS Discov ; 28(2): 36-41, 2023 03.
Article in English | MEDLINE | ID: mdl-36464160

ABSTRACT

Establishment of drug testing of patient-derived cancer cells (PDCs) in physiologically relevant 3-dimensional (3D) culture is central for drug discovery and cancer research, as well as for functional precision medicine. Here, we describe the detailed protocol allowing the 3D drug testing of PDCs - or any type of cells of interest - in Matrigel in 384-well plate format using automation. We also provide an alternative protocol, which does not require supporting matrices. The cancer tissue is obtained directly from clinics (after surgery or biopsy) and processed into single cell suspension. Systematic drug sensitivity and resistance testing (DSRT) is carried out on the PDCs directly after cancer cell isolation from tissue or on cells expanded for a few passages. In the 3D-DSRT assay, the PDCs are plated in 384-well plates in Matrigel, grown as spheroids, and treated with compounds of interest for 72 h. The cell viability is directly measured using a luminescence-based assay. Alternatively, prior to the cell viability measurement, drug-treated cells can be directly subjected to automated high-content bright field imaging or stained for fluorescence (live) cell microscopy for further image analysis. This is followed by the quality control and data analysis. The 3D-DSRT can be performed within a 1-3-week timeframe of the clinical sampling of cancer tissue, depending on the amount of the obtained tissue, growth rate of cancer cells, and the number of drugs being tested. The 3D-DSRT method can be flexibly modified, e.g., to be carried out with or without supporting matrices with U-bottom 384-well plates when appropriate for the PDCs or other cell models used.


Subject(s)
Drug Discovery , Neoplasms , Humans , Drug Screening Assays, Antitumor , Drug Discovery/methods , Neoplasms/drug therapy , Collagen/pharmacology
14.
ACS Appl Mater Interfaces ; 14(36): 41065-41071, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36044205

ABSTRACT

Confining Li metal in a three-dimensional (3D) matrix has been proven effective in improving the Li-metal anodes; however, in most studies, the loading of Li in the 3D matrix is far excessive, resulting in a dense bulk Li-metal anode with a low Li-utilization rate, forfeiting the effect of the 3D matrix. Here, we show that limiting the loading of Li metal within an interface-modified 3D carbon matrix not only increases the Li-utilization rate but also improves the electrochemical performance of the Li-metal anode. We use lithiophilic Fe2O3 granules anchored on a 3D carbon fiber scaffold to guide molten Li dispersion onto the fibers with controlled Li loading. Limiting Li loading maximizes the interface lithiophilic effect of the Fe2O3 granules while preserving sufficient space for electrolyte infusion, collectively ensuring uniform Li deposition and fast Li+ transport kinetics. The Li anode with limited Li dosage achieves remarkably improved Li-anode performances, including long lifespan, low voltage polarization, and low electrochemical resistance in both the symmetric cells and full cells. The improved electrochemical performance of the limited Li anode substantiates the importance to reduce Li loading from a fresh perspective and provides an avenue for building practical Li-metal batteries.

15.
Biotechnol Bioeng ; 119(10): 2964-2978, 2022 10.
Article in English | MEDLINE | ID: mdl-35799309

ABSTRACT

The osteopontin (OPN) released from mesenchymal stem cells (MSCs) undergoing lineage differentiation can negatively influence the expansion of hematopoietic stem cells (HSCs) in coculture systems developed for expanding HSCs. Therefore, minimizing the amount of OPN in the coculture system is important for the successful ex vivo expansion of HSCs. Toward this goal, a bioengineered three dimensional (3D) microfibrous-matrix that can maintain MSCs in less OPN-releasing conditions has been developed, and its influence on the expansion of HSCs has been studied. The newly developed 3D matrix significantly decreased the release of OPN, depending on the MSC culture conditions used during the priming period before HSC seeding. The culture system with the lowest amount of OPN facilitated a more than 24-fold increase in HSC number in 1 week time period. Interestingly, the viability of expanded cells and the CD34+   pure population of HSCs were found to be the highest in the low OPN-containing system. Therefore, bioengineered microfibrous 3D matrices seeded with MSCs, primed under suitable culture conditions, can be an improved ex vivo expansion system for HSC culture.


Subject(s)
Mesenchymal Stem Cells , Osteopontin , Cell Differentiation , Cells, Cultured , Coculture Techniques , Fetal Blood , Hematopoietic Stem Cells
16.
Methods Mol Biol ; 2514: 129-139, 2022.
Article in English | MEDLINE | ID: mdl-35771425

ABSTRACT

Vasculogenic mimicry formation is generally assessed using three-dimensional (3D) cultures of aggressive tumor cells grown over an extended incubation period. Test agents can be introduced during growth of the 3D cultures to determine their effect on vasculogenic mimicry formation. Here, we describe the protocol for evaluation of the inhibitory effect of drugs on vasculogenic mimicry in vitro using bright-field and fluorescence microscopy on 3D cultures of tumor cells grown in Matrigel.


Subject(s)
Neovascularization, Pathologic , Cell Differentiation , Cell Line, Tumor , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Pharmaceutical Preparations
17.
Cells ; 11(11)2022 05 29.
Article in English | MEDLINE | ID: mdl-35681473

ABSTRACT

Directional cell migration and the establishment of polarity play an important role in development, wound healing, and host cell defense. While actin polymerization provides the driving force at the cell front, the microtubule network assumes a regulatory function, in coordinating front protrusion and rear retraction. By using Dictyostelium discoideum cells as a model for amoeboid movement in different 2D and 3D environments, the position of the centrosome relative to the nucleus was analyzed using live-cell microscopy. Our results showed that the centrosome was preferentially located rearward of the nucleus under all conditions tested for directed migration, while the nucleus was oriented toward the expanding front. When cells are hindered from straight movement by obstacles, the centrosome is displaced temporarily from its rearward location to the side of the nucleus, but is reoriented within seconds. This relocalization is supported by the presence of intact microtubules and their contact with the cortex. The data suggest that the centrosome is responsible for coordinating microtubules with respect to the nucleus. In summary, we have analyzed the orientation of the centrosome during different modes of migration in an amoeboid model and present evidence that the basic principles of centrosome positioning and movement are conserved between Dictyostelium and human leukocytes.


Subject(s)
Dictyostelium , Cell Movement , Cell Nucleus , Centrosome , Humans , Microtubules
18.
In Vitro Model ; 1(6): 463-471, 2022.
Article in English | MEDLINE | ID: mdl-37096022

ABSTRACT

3D in vitro culture models of cancer cells in extracellular matrix (ECM) have been developed to investigate drug targeting and resistance or, alternatively, mechanisms of invasion; however, models allowing analysis of shared pathways mediating invasion and therapy resistance are lacking. To evaluate therapy response associated with cancer cell invasion, we here used 3D invasion culture of tumor spheroids in 3D fibrillar collagen and applied Ethanol-Ethyl cinnamate (EtOH-ECi) based optical clearing to detect both spheroid core and invasion zone by subcellular-resolved 3D microscopy. When subjected to a single dose of irradiation (4 Gy), we detected significant cell survival in the invasion zone. By physical separation of the core and invasion zone, we identified differentially regulated genes preferentially engaged in invading cells controlling cell division, repair, and survival. This imaging-based 3D invasion culture may be useful for the analysis of complex therapy-response patterns in cancer cells in drug discovery and invasion-associated resistance development. Supplementary Information: The online version contains supplementary material available at 10.1007/s44164-022-00040-x.

19.
Oper Orthop Traumatol ; 34(4): 295-302, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34609575

ABSTRACT

OBJECTIVE: All arthroscopic one-step treatment of osteochondral defects of the talus with matrix-assisted bone marrow stimulation with a cell-free hyaluronic acid 3D matrix. INDICATIONS: Symptomatic osteochondral defects of the talus (1-2 cm2, ICRS III-IV). CONTRAINDICATIONS: Large non-shouldered osteochondral defects (2 cm2) of the talus, arthritis, kissing lesions of the distal tibia, metabolic arthropathies, non-reconstructable defects, hindfoot malalignment, chronic inflammatory systemic disorders. SURGICAL TECHNIQUE: Arthroscopic examination of the ankle joint and visualization of the osteochondral defect of the talus to confirm the indication via standard portals. First, debridement of the osteochondral defect with arthroscopic curette or shaver, removal of loose fragments, resection of the sclerotic bone via shaver and measurement of the defect size. Second, multiple perforation of the subchondral plate to recruit mesenchymal stem cells from the underlying bone marrow by an microfracturing awl to stimulate the differentiation of fibrocartilaginous repair tissue in the defect zone. Then, the cell-free hyaluronic acid 3D matrix is placed into the defect via arthroscopic forceps and modulated by a probe to avoid detachment of the matrix by ankle joint movement. POSTOPERATIVE MANAGEMENT: Postoperative management includes movement restrictions for pro- and supination but free passive dorsal extension and plantar flexion. No weight-bearing is allowed for 6 weeks. RESULTS: Twenty-three patients (male: 11/women: 12) with a mean age of 33 years (range: 18-56) and a minimum follow-up of 24 months were included in this retrospective two-center study. The mean values for Foot and Ankle Outcome Score (FAOS) were 79 (range 33-93), for Tegner score 3 (range: 1-5) and the Visual analog scale (VAS) pain 1 (range: 0-3) and VAS function 2 (range: 0-5). At follow-up, MRI was available in 17 of 23 patients. MRI results showed a mean Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score of 81 (range: 65-90). Complications were not observed during the follow-up period.


Subject(s)
Intra-Articular Fractures , Talus , Adult , Ankle Joint/diagnostic imaging , Ankle Joint/surgery , Arthroscopy , Bone Marrow/physiology , Female , Humans , Hyaluronic Acid , Magnetic Resonance Imaging , Male , Retrospective Studies , Talus/surgery , Transplantation, Autologous , Treatment Outcome
20.
Polymers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451211

ABSTRACT

Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.

SELECTION OF CITATIONS
SEARCH DETAIL