Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Food Chem Toxicol ; 192: 114907, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111684

ABSTRACT

Several toxic metabolites, such as aflatoxin M1 (AFM1), are known to contaminate dairy milk. However, as mentioned in an external EFSA report, there is a knowledge gap regarding the carry-over of certain emerging toxins such as microcystin-LR (MC-LR). Therefore, this work aimed to develop an LC-MS/MS method for MC-LR quantification in dairy milk. Also, the method included AFM1 as a common fungal metabolite and applied to analyze 113 dairy milk samples collected directly after the end of the summer peak. Both toxins were below their LODs, keeping the question on MC-LR carry-over still unanswered. Moreover, an in silico analysis, using a 3D molecular modeling was performed, pointing to a possible interaction between MC-LR and milk proteins, especially ß-lactoglobulin. Since AFM1 and MC-LR are hepatotoxic, their interaction in inducing mitochondrial dysfunction in HepG2 cells was investigated at low (subcytotoxic) concentrations. Live cell imaging-based assays showed an inhibition in cell viability, without involvement of caspase-3/7, and a hyperpolarization in the mitochondrial membrane potential after the exposure to a mixture of 100 ng mL-1 AFM1 and 1000 ng mL-1 MC-LR for 48h. Extracellular flux analysis revealed inhibitions of several key parameters of mitochondrial function (basal respiration, ATP-linked respiration, and spare respiratory capacity).

2.
Article in English | MEDLINE | ID: mdl-38830038

ABSTRACT

OBJECTIVES: Three-dimensional (3D) modelling of aortic leaflets remains difficult due to insufficient resolution of medical imaging. We aimed to model the coaptation and load-bearing surfaces of the aortic leaflets and adapt this workflow to aid in the design of aortic valve neocuspidizations. METHODS: Geometric morphometrics, using landmarks and semilandmarks, was applied to the geometric determinants of the aortic leaflets from computed tomography, followed by an isogeometric analysis using Non-Uniform Rational Basis Splines (NURBS). Ten aortic valve models were generated, measuring determinants of leaflet geometry defined as 3D NURBS curves, and leaflet coaptation and load-bearing surfaces were defined as 3D NURBS surfaces. Neocuspidizations were obtained by either shifting the upper central coaptation landmark towards the sinotubular junction or using parametric neo-landmarks placed on a centreline drawn between the centroid of the aortic root base and centroid of a circle circumscribing the 3 upper commissural landmarks. RESULTS: The ratio of the leaflet free margin length to the geometric height was 1.83, whereas the ratio of the commissural coaptation height to the central coaptation height was 1.93. The median coaptation surface was 137 mm2 (IQR 58) and the median load-bearing surface was 203 mm2 (60) per leaflet. Neocuspidization multiplied the central coaptation height by 3.7 and the coaptation surfaces by 1.97 and 1.92 using the native coaptation axis and centroid coaptation axis, respectively. CONCLUSIONS: Geometric morphometrics reliably defined the coaptation and load-bearing surfaces of aortic leaflets, enabling an experimental 3D design for the in silico neocuspidization of aortic valves.

3.
Chemosphere ; 361: 142443, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815811

ABSTRACT

Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.


Subject(s)
Crassostrea , Cytochrome P-450 Enzyme System , Receptors, Cytoplasmic and Nuclear , Crassostrea/genetics , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Molecular Docking Simulation , Gene Expression Regulation , Molecular Dynamics Simulation , Xenobiotics/metabolism
4.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673722

ABSTRACT

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Subject(s)
Molecular Dynamics Simulation , Protein Disulfide-Isomerases , Vitamin K Epoxide Reductases , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/chemistry , Vitamin K Epoxide Reductases/chemistry , Vitamin K Epoxide Reductases/metabolism , Vitamin K Epoxide Reductases/genetics , Humans , Disulfides/chemistry , Disulfides/metabolism , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Models, Molecular , Protein Conformation , Oxidation-Reduction , Protein Binding
5.
Sci Rep ; 14(1): 7355, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548843

ABSTRACT

This paper reports results of laboratory and 3D numerical modeled pull-out tests with steel ladders and polymeric strip reinforcements. These types of reinforcement are commonly used in reinforced soil walls constructed with concrete facing elements. Laboratory pull-out tests are required to determine accurate and realistic pull-out strength values considering the interaction of specific reinforcement and backfill materials under different confining pressures (i.e., trying to simulate the different reinforcement layer arrangements and load conditions in actual reinforced soil walls). International design Codes for reinforced soil walls provide default values for pull-out strength. However, in many cases, default values are too conservative and/or are not strictly specified for particular reinforcement types. Pull-out tests can be difficult and expensive to perform, thus not being common nor worth for the vast majority of reinforced soil wall projects. Consequently, calibrated numerical models can be useful to predict pull-out response under site-specific conditions, and provide further understanding of the mechanisms involved in the soil-reinforcement interaction. Details of the numerical approach, including relevant aspects of the soil-reinforcement interfaces, are described. Examples of calibrated numerical predictions for pull-out loads, displacements, and soil-dilatancy effects are presented. The influence of reinforcement, soil and interface stiffnesses is shown. Numerical results provide useful insight for future modelling works of the complex interaction between type-specific backfill materials and reinforcement element, relevant for investigation and/or practical design of reinforced soil walls.

6.
Vet Med Sci ; 10(2): e1396, 2024 03.
Article in English | MEDLINE | ID: mdl-38444190

ABSTRACT

BACKGROUND: With the development of technology, 2D images have left their place for 3D models. The 3D modelling technique is widely used in plastic surgery, orthopaedic surgery, neurosurgery, traumatology, dentistry and medical education. The skull is important in terms of containing the starting parts of systems with vital functions. OBJECTIVE: The aim of the study is to reveal the difference between male and female and other species by 3D (three-dimensional) modelling and craniometric measurements of Romanov heads. METHODS: In our study, skulls of Romanov sheep (10 females and 10 males) older than 1-year-old were used. The heads of Romanov sheep were scanned with computed tomography and modelled in 3D. RESULTS AND CONCLUSIONS: In the study, it was determined that there was a statistically significant difference between male and female sheep in terms of the largest nose length, facial width, molar row length, viscerocranium length, and foramen magnum height parameters (p < 0.05). It was determined that the greatest width of the foramen magnum measurement parameter and the skull index showed statistically significant differences between the genders at the p < 0.01 level. No statistically significant difference was found in other measurements (p > 0.05). The data obtained as a result of the study will help in the racial discrimination and classification of bones obtained from zoo archaeological excavations.


Subject(s)
Sheep, Domestic , Skull , Female , Male , Sheep , Animals , Skull/diagnostic imaging , Tomography, X-Ray Computed
7.
Anat Histol Embryol ; 53(2): e13023, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372086

ABSTRACT

As technology has developed in recent years, the use of three-dimensional (3D) scanners and printers has become widespread in the medical field. However, since this field is new, all kinds of methodological and experimental related studies gain importance. This study aimed to identify the differences between the calliper measurements by determining the craniometric data on the models constructed by scanning the crania of New Zealand Rabbits (Oryctolagus cuniculus L.), preferred as experimental animals, with a three-dimensional scanner. Therefore, a total of 12 New Zealand rabbits including 6 females and 6 males were used. After the crania that comprised the study material were macerated, they were subjected to 3D scanning. After the scanning process was completed, they were craniometrically measured both on the scanned models and by using a digital calliper. Analysis of the craniometric data of the 3D scanner showed that there was a difference between sexes at the level of p < 0.05 in widest length between the external acoustic meatus (WLBEAM), skull width and Foramen magnum height (FMH) parameters and cranial index data, and at the level of p < 0.001 in the largest nasal width (LNW) parameter. A statistical difference was found between sexes in frontal length, WLBEAM, LNW and FMH parameters and cranial index values in craniometric data collected with the digital calliper (p < 0.05). Consequently, the data collected in this study were found to be close to each other in both methods, suggesting that the 3D scanner may be used in morphometric studies.


Subject(s)
Foramen Magnum , Skull , Male , Female , Rabbits , Animals , Skull/diagnostic imaging , Cephalometry/methods , Cephalometry/veterinary , Head , Imaging, Three-Dimensional/veterinary
8.
Int J Legal Med ; 138(4): 1411-1424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38351205

ABSTRACT

Medical imaging is a valuable source for facilitating empirical research and provides an accessible gateway for developing novel forensic anthropological methods for analysis including 3D modelling. This is especially critical for the United Kingdom (UK), where methods developed from modern UK populations do not currently exist. This study introduces a new approach to assist in human identification using 3D models of the paranasal sinuses. The models were produced from a database of 500 modern CT scans provided by University College London Hospital. Linear measurements and elliptic Fourier coefficients taken from 1500 three-dimensional models across six ethnic groups assessed by one-way ANOVA and discriminant function analysis showed a range of classification rates with certain rates reaching 75-85.7% (p < 0.05) in correctly classifying age and sex according to size and shape. The findings offer insights into the potential for employing paranasal sinuses as an attribute for establishing the identification of unknown human remains in future crime reconstructions.


Subject(s)
Forensic Anthropology , Imaging, Three-Dimensional , Paranasal Sinuses , Tomography, X-Ray Computed , Humans , Paranasal Sinuses/diagnostic imaging , Male , Forensic Anthropology/methods , Female , Adult , Middle Aged , Aged , United Kingdom , Adolescent , Young Adult , Discriminant Analysis , Ethnicity , Aged, 80 and over
9.
Front Surg ; 11: 1328187, 2024.
Article in English | MEDLINE | ID: mdl-38317854

ABSTRACT

The aim of this study was to preoperatively asses the feasibility of drilling a bony recess for the fixation of a cochlear implant in the temporal bone. Even though complications are rare with cochlear implantations, drilling at the site of implantation have resulted in hematoma or cerebrospinal fluid leakage. Mainly in cases with a reduced temporal bone thickness, the risk for complications has increased, such as in paediatric patients. Methods: An in-house designed semi-automatic algorithm was developed to analyse a 3D model of the skull. The feasibility of drilling the recess was determined by a gradient descent method to search for the thickest part of the temporal bone. Feasibility was determined by the residual bone thickness which was calculated after a simulated drilling of the recess at the thickest position. An initial validation of the algorithm was performed by measuring the accuracy of the algorithm on five 3D models with known thickest locations for the recess. The accuracy was determined by a part comparison between the known position and algorithm provided position. Results: In four of the five validation models a standard deviation for accuracy below the predetermined cut-off value of 4.2 mm was achieved between the actual thickest position and the position determined by the algorithm. Furthermore, the residual thickness calculated by the algorithm showed a high agreement (max. 0.02 mm difference) with the actual thickness. Conclusion: With the developed algorithm, a semi-automatic method was created to analyse the temporal bone thickness within a specified region of interest on the skull. Thereby, providing indications for surgical feasibility, potential risks for anatomical structures and impact on procedure time of cochlear implantation. This method could be a valuable research tool to objectively assess feasibility of drilling a recess in patients with thin temporal bones preoperatively.

10.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396721

ABSTRACT

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme transforming vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents delivered by its redox partner through thiol-disulfide exchange reactions. The luminal loop (L-loop) is the principal mediator of hVKORC1 activation, and it is a region frequently harbouring numerous missense mutations. Four L-loop hVKORC1 mutants, suggested in vitro as either resistant (A41S, H68Y) or completely inactive (S52W, W59R), were studied in the oxidised state by numerical approaches (in silico). The DYNASOME and POCKETOME of each mutant were characterised and compared to the native protein, recently described as a modular protein composed of the structurally stable transmembrane domain (TMD) and the intrinsically disordered L-loop, exhibiting quasi-independent dynamics. The DYNASOME of mutants revealed that L-loop missense point mutations impact not only its folding and dynamics, but also those of the TMD, highlighting a strong mutation-specific interdependence between these domains. Another consequence of the mutation-induced effects manifests in the global changes (geometric, topological, and probabilistic) of the newly detected cryptic pockets and the alternation of the recognition properties of the L-loop with its redox protein. Based on our results, we postulate that (i) intra-protein allosteric regulation and (ii) the inherent allosteric regulation and cryptic pockets of each mutant depend on its DYNASOME; and (iii) the recognition of the redox protein by hVKORC1 (INTERACTOME) depend on their DYNASOME. This multifaceted description of proteins produces "omics" data sets, crucial for understanding the physiological processes of proteins and the pathologies caused by alteration of the protein properties at various "omics" levels. Additionally, such characterisation opens novel perspectives for the development of "allo-network drugs" essential for the treatment of blood disorders.


Subject(s)
Mutation, Missense , Vitamin K Epoxide Reductases , Humans , Mutation , Oxidation-Reduction , Vitamin K/metabolism , Vitamin K Epoxide Reductases/genetics , Vitamin K Epoxide Reductases/metabolism
11.
Anat Histol Embryol ; 53(1): e12993, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925599

ABSTRACT

Cattle disorders affecting the sphenoid sinus are underreported, likely due to difficulties in imaging and lacking topographic knowledge. This study aimed to provide a detailed description of the normal anatomical and morphometric features of the cattle sphenoid sinus. Twelve healthy adult Holstein cow heads were used, and the sinus was examined using CT, anatomical sectioning and 3D modelling. The sinus was bilaterally detected in all animals but exhibited structural asymmetry and significant interindividual differences in morphological characteristics. Three parts of the sinus were defined, namely the rostral, median and alar parts, which conform to the morphological structure of the sphenoid bone. The rostral part was bilateral in shape and located on the orbit wall of the presphenoid bone in all animals. The median part, which pneumatized the body of the sphenoid bone, was observed bilaterally in seven animals, while the alar part, which pneumatized the wing of the sphenoid bone, was formed bilaterally in four animals. The sinus volume and surface area were 11 ± 8 cm3 and 49 ± 30 cm2 , respectively. These findings may aid in the diagnosis of cattle sphenoid sinus disorders and contribute to the knowledge of regional anatomy for radiologists and clinicians.


Subject(s)
Paranasal Sinuses , Sphenoid Sinus , Female , Cattle , Animals , Sphenoid Sinus/diagnostic imaging , Sphenoid Sinus/anatomy & histology , Sphenoid Sinus/surgery , Sphenoid Bone/diagnostic imaging , Sphenoid Bone/anatomy & histology , Orbit/anatomy & histology , Image Processing, Computer-Assisted
12.
Front Immunol ; 14: 1285899, 2023.
Article in English | MEDLINE | ID: mdl-38143769

ABSTRACT

T-cell specificity to differentiate between self and non-self relies on T-cell receptor (TCR) recognition of peptides presented by the Major Histocompatibility Complex (MHC). Investigations into the three-dimensional (3D) structures of peptide:MHC (pMHC) complexes have provided valuable insights of MHC functions. Given the limited availability of experimental pMHC structures and considerable diversity of peptides and MHC alleles, it calls for the development of efficient and reliable computational approaches for modeling pMHC structures. Here we present an update of PANDORA and the systematic evaluation of its performance in modelling 3D structures of pMHC class II complexes (pMHC-II), which play a key role in the cancer immune response. PANDORA is a modelling software that can build low-energy models in a few minutes by restraining peptide residues inside the MHC-II binding groove. We benchmarked PANDORA on 136 experimentally determined pMHC-II structures covering 44 unique αß chain pairs. Our pipeline achieves a median backbone Ligand-Root Mean Squared Deviation (L-RMSD) of 0.42 Å on the binding core and 0.88 Å on the whole peptide for the benchmark dataset. We incorporated software improvements to make PANDORA a pan-allele framework and improved the user interface and software quality. Its computational efficiency allows enriching the wealth of pMHC binding affinity and mass spectrometry data with 3D models. These models can be used as a starting point for molecular dynamics simulations or structure-boosted deep learning algorithms to identify MHC-binding peptides. PANDORA is available as a Python package through Conda or as a source installation at https://github.com/X-lab-3D/PANDORA.


Subject(s)
Benchmarking , Peptides , Peptides/metabolism , Major Histocompatibility Complex , Histocompatibility Antigens , Software
13.
3D Print Med ; 9(1): 25, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695521

ABSTRACT

Preoperative planning of comminuted fracture repair using 3D printed anatomical models is enabling surgeons to visualize and simulate the fracture reduction processes before surgery. However, the preparation of such models can be challenging due to the complexity of certain fractures, particularly in preserving fine detail in bone fragments, maintaining the positioning of displaced fragments, and accurate positioning of multiple bones. This study described several key technical considerations for preparing 3D printed anatomical models for comminuted fracture preoperative planning. An optimized segmentation protocol was developed that preserves fine detail in bone fragments, resulting in a more accurate representation of the fracture. Additionally, struts were manually added to the digital model to maintain the positioning of displaced fragments after fabrication, reducing the likelihood of errors during printing or misrepresentation of fragment positioning. Magnets were also used to enable separation and visualization of accurate positioning of multiple bones, making it easier to visualize fracture components otherwise obscured by the anatomy. Finally, the infill for non-target structures was adjusted to minimize print time and material wastage. These technical optimizations improved the accuracy and efficiency of preparing 3D printed anatomical models for comminuted fracture preoperative planning, improving opportunities for surgeons to better plan surgical treatment in advance, reducing the likelihood of errors, with the goal of improving surgical outcomes.

14.
Metab Brain Dis ; 38(8): 2665-2678, 2023 12.
Article in English | MEDLINE | ID: mdl-37656370

ABSTRACT

The PIGO gene encodes the GPI-ethanolamine phosphate transferase 3, which is crucial for the final synthetic step of the glycosylphosphatidylinositol-anchor serving to attach various proteins to their cell surface. These proteins are intrinsic for normal neuronal and embryonic development. In the current research work, a clinical investigation was conducted on a patient from a consanguineous family suffering from epileptic encephalopathy, characterized by severe seizures, developmental delay, hypotonia, ataxia and hyperphosphatasia. Molecular analysis was performed using Whole Exome Sequencing (WES). The molecular investigation revealed a novel homozygous variant c.1132C > T in the PIGO gene, in which a highly conserved Leucine was changed to a Phenylalanine (p.L378F). To investigate the impact of the non-synonymous mutation, a 3D structural model of the PIGO protein was generated using the AlphaFold protein structure database as a resource for template-based tertiary structure modeling. A structural analysis by applying some bioinformatic tools on both variants 378L and 378F models predicted the pathogenicity of the non-synonymous mutation and its potential functional and structural effects on PIGO protein. We also discussed the phenotypic and genotypic variability associated with the PIGO deficiency. To our best knowledge, this is the first report of a patient diagnosed with infantile epileptic encephalopathy showing a high elevation of serum alkaline phosphatase level. Our findings, therefore, widen the genotype and phenotype spectrum of GPI-anchor deficiencies and broaden the cohort of patients with PIGO associated epileptic encephalopathy with an elevated serum alkaline phosphatase level.


Subject(s)
Alkaline Phosphatase , Epilepsy , Humans , Membrane Proteins/genetics , Epilepsy/genetics , Genetic Association Studies , Mutation/genetics
15.
Forensic Sci Res ; 8(2): 123-132, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37621450

ABSTRACT

Modern computed tomography (CT) databases are becoming an accepted resource for the practice and development of identification methods in forensic anthropology. However, the utility of 3D models created using free and open-source visualization software such as 3D Slicer has not yet been thoroughly assessed for morphoscopic biological profiling methods where virtual methods of analysis are becoming more common. This paper presents a study that builds on the initial findings from Robles et al. (2020) to determine the feasibility of estimating sex on stereolithic (STL) 3D cranial models produced from CT scans from a modern, living UK population (n = 80) using equation 2 from the Walker's (2008) morphoscopic method. Kendall's coefficients of concordance (KCC) indicated substantial agreement using cranial features scores in an inter-observer test and a video-inter-observer test. Fleiss' Kappa scores showed moderate agreement (0.50) overall between inter-observer sex estimations, and for observer sex estimations in comparison to recorded sexes (0.56). It was found that novice users could virtually employ morphoscopic sex estimation methods effectively on STL 3D cranial models from modern individuals. This study also highlights the potential that digital databases of modern living populations can offer forensic anthropology. Key points: First example of Walker's (2008) method applied to a living UK population.Open-source software is a valuable resource for crime reconstruction approaches.Male scoring bias was observed in method application.Forensic anthropologists would benefit from virtual anthropology training to use and interpret 3D models.Digital databases offer more ethical, diverse, modern populations for future research.

16.
Knee Surg Sports Traumatol Arthrosc ; 31(11): 4886-4894, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572141

ABSTRACT

PURPOSE: Acute syndesmotic ankle injuries continue to impose a diagnostic dilemma and it remains unclear whether weightbearing and/or external rotation should be added during the imaging process. Therefore, the aim of this study was to assess if combined weightbearing and external rotation increases the diagnostic sensitivity of syndesmotic ankle instability using weightbearing CT (WBCT) imaging, compared to isolated weightbearing. METHODS: In this retrospective study, patients with an acute syndesmotic ankle injury were analysed using a WBCT (N = 21; Age = 31.6 ± 14.1 years old). Inclusion criteria were an MRI confirmed syndesmotic ligament injury imaged by a WBCT of the ankle during weightbearing and combined weightbearing-external rotation. Exclusion criteria consisted of fracture associated syndesmotic injuries. Three-dimensional (3D) models were generated from the CT slices. Tibiofibular displacement and talar rotation were quantified using automated 3D measurements (anterior tibiofibular distance (ATFD), Alpha angle, posterior Tibiofibular distance (PTFD) and Talar rotation (TR) angle in comparison to the contralateral non-injured ankle. RESULTS: The difference in neutral-stressed Alpha angle and ATFD showed a significant difference between patients with a syndesmotic ankle lesion and contralateral control (P = 0.046 and P = 0.039, respectively). The difference in neutral-stressed PTFD and TR angle did not show a significant difference between patients with a syndesmotic ankle lesion and healthy ankles (n.s.). CONCLUSION: Application of combined weightbearing-external rotation reveals an increased ATFD in patients with syndesmotic ligament injuries. This study provides the first insights based on 3D measurements to support the potential relevance of applying external rotation during WBCT imaging. In clinical practice, this could enhance the current diagnostic accuracy of subtle syndesmotic instability in a non-invasive manner. However, to what extent certain displacement patterns require operative treatment strategies has yet to be determined in future studies. LEVEL OF EVIDENCE: Level III.

17.
Vet Med Sci ; 9(5): 2247-2259, 2023 09.
Article in English | MEDLINE | ID: mdl-37530404

ABSTRACT

BACKGROUND: Animals of different regions have adapted to adverse environmental conditions by modifying their phenotypic and genotypic characteristics in the long run. OBJECTIVES: In this study, the effect of genetic variations of 10 heat shock protein (HSP) genes (HSP70A4, HSP70A9, HSP40C17, HSP40C27, HSP90AA1, HSP90AB1, HSPB7, HSPB11, HSPD1 and HSPE1) on the three-dimensional protein structure and function of proteins in Tali goat (a tropical breed) were studied and were compared with Saanen goat (as a sensitive breed). METHODS: A pooled DNA of 15 samples from blood was sequenced and mapped to the goat reference sequence. The bioinformatics analysis was used to identify nsSNPs in the Tali breed and was compared with the Saanen goat. Four online bioinformatics tools (Sorting Intolerant from Tolerant, Protein Variation Effect Analyzer, Polymorphism Phenotyping version2 and Single Nucleotide Polymorphism Database and Gene Ontology) showed three deleterious missense nsSNPs and seven natural missense SNPs in these HSPs genes of Tali goat. RESULTS: Out of 10 reported nsSNPs, 5 nsSNPs in HSP70A4, 1 nsSNP inHSP70A9, 2 nsSNPs in HSP40C17, 1 nsSNP in HSP40C27 and 1 nsSNP in HSPD1 were detected. ConSurf tools showed that the majority of the predicted nsSNPs occur in conserved sites. Moreover, several post-translational modification (PTM) predictors computed the probability of post-translation change of nsSNPs. The putative phosphorylation and glycosylation sites in HSPs proteins were substitutions rs669769139 and rs666336692 of the Tali goat breed. CONCLUSION: These results on the effect of type of genetic variants on the function of HSP proteins will assist to predict the resistance to hard conditions in goat breeds. Considering that the identified SNPid rs669769139 (S248) which is located on the N-terminal ATPase domain of HSP70A4 is a PTM site with a highly conserved score and a natural substitution on changing the stability and benign protein that can affect the functional and structural characterization of HSPs protein for adaptation to the local climate.


Subject(s)
Goats , Heat-Shock Proteins , Animals , Heat-Shock Proteins/genetics , Goats/genetics , Base Sequence , Polymorphism, Single Nucleotide
18.
Int J Comput Dent ; 0(0): 0, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37477083

ABSTRACT

OBJECTIVES: Virtual Reality (VR) technologies can be used as a content-delivery system for the purposes of both entertainment and education. Remote and digital education has become ever so important in a world where global disruptive events such as pandemics and natural disasters can define access to a face-to-face learning environment. An important aspect of VR technologies for dentistry is the creation of digital 3D models. The primary of this review was to answer the focused research question, "What software techniques are used in the creation of digital 3D models for use in dental education." METHODS: This study systematically evaluates current software and techniques used for creating digital 3D models in dental education using the Preferred Reporting Items for Systematic Reviews (PRIMSA). RESULTS: The search strategies did not find any studies specific to the creation of dental-related 3D models. Therefore, this study for the first time provided an overview of common techniques of 3D model fabrication is discussed. Further some examples of methods of creating 3D models relevant to dentistry such armamentarium and anatomical oral structures have been discussed in considerable detail. CONCLUSION: The creation of 3D modelling is a rapidly evolving field with software updates and new programs being continually released. This work highlights fundamental lack of published work in the creation of 3D dental models for educational applications.

19.
J Insect Physiol ; 149: 104546, 2023 09.
Article in English | MEDLINE | ID: mdl-37451537

ABSTRACT

We present a detailed analysis of the brain anatomy of two saturniid species, the cecropia silk moth, Hyalophora cecropia, and the Chinese oak silk moth, Antheraea pernyi, including 3D reconstructions of the major brain neuropils in the larva and in male and female adults. The 3D reconstructions, prepared from high-resolution optical sections, showed that the corresponding neuropils of these saturniid species are virtually identical. Similarities between the two species include a pronounced sexual dimorphism in the adults in the form of a male-specific assembly of markedly enlarged glomeruli forming the so-called macroglomerular complex. From the reports published to date, it can be concluded that the neuropil architecture of saturniids resembles that of other nocturnal moths, including the sibling family Sphingidae. In addition, compared with previous anatomical data on diurnal lepidopteran species, significant differences were observed in the two saturniid species, which include the thickness of the Y-tract of the mushroom body, the size of the main neuropils of the optic lobes, and the sexual dimorphisms of the antennal lobes.


Subject(s)
Manduca , Moths , Male , Female , Animals , Larva , Imaging, Three-Dimensional , Brain/anatomy & histology , Neuropil
20.
World Neurosurg ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37331475

ABSTRACT

BACKGROUND: Three-dimensional (3D) neuroanatomical knowledge is vital in neurosurgery. Technological advances improved 3D anatomical perception, but they are usually expensive and not widely available. The aim of the present study was to provide a detailed description of the photo-stacking technique for high-resolution neuroanatomical photography and 3D modeling. METHODS: The photo-stacking technique was described in a step-by-step approach. The time for image acquisition, file conversion, processing, and final production was measured using 2 processing methods. The total number and file size of images are presented. Measures of central tendency and dispersion report the measured values. RESULTS: Ten models were used in both methods achieving 20 models with high-definition images. The mean number of acquired images was 40.6 (14-67), image acquisition time 51.50 ± 18.8 s, file conversion time 250 ± 134.6 s, processing time 50.46 ± 21.46 s and 41.97 ± 20.84 s, and 3D reconstruction time was 4.29 ± 0.74 s and 3.89 ± 0.60 s for methods B and C, respectively. The mean file size of RAW files is 1010 ± 452 megabyte (MB) and 101.06 ± 38.09 MB for Joint Photographic Experts Group files after conversion. The mean size of the final image means size is 71.9 ± 0.126 MB, and the mean file size of the 3D model means is 37.4 ± 0.516 MB for both methods. The total equipment used was less expensive than other reported systems. CONCLUSIONS: The photo-stacking technique is a simple and inexpensive method to create 3D models and high-definition images that could prove valuable in neuroanatomy training.

SELECTION OF CITATIONS
SEARCH DETAIL