Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Small Methods ; : e2400831, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118579

ABSTRACT

Focus on advancement of energy storage has now turned to curbing carbon emissions in the transportation sector by adopting electric vehicles (EVs). Technological advancements in lithium-ion batteries (LIBs), valued for their lightweight and high capacity, are critical to making this switch a reality. Integrating structurally enhanced LIBs directly into vehicular design tackles two EV limitations: vehicle range and weight. In this study, 3D-carbon (3D-C) lattices, prepared with an inexpensive stereolithography-type 3D printer followed by carbonization, are proposed as scaffolds for Li metal anodes for structural LIBs. Mechanical stability tests revealed that the 3D-C lattice can withstand a maximum stress of 5.15 ± 0.15 MPa, which makes 3D-C lattices an ideal candidate for structural battery electrodes. Symmetric cell tests show the superior cycling stability of 3D-C scaffolds compared to conventional bare Cu foil current collectors. When 3D-C scaffolds are used, a small overpotential (≈0.075 V) is retained over 100 cycles at 1 mA cm-2 for 3 mAh cm-2, while the overpotential of a bare Cu symmetric cell is unstable and increased to 0.74 V at the 96th cycle. The precisely oriented internal pores of the 3D-C lattice confine lithium metal deposits within the 3D scaffold, effectively preventing short circuits.

2.
Methods Mol Biol ; 2835: 29-37, 2024.
Article in English | MEDLINE | ID: mdl-39105903

ABSTRACT

The application of adult mesenchymal stem cells (MSCs) in the field of tissue regeneration is of increasing interest to the scientific community. In particular, scaffolds and/or hydrogel based on glycosaminoglycans (GAGs) play a pivotal role due to their ability to support the in vitro growth and differentiation of MSCs toward a specific phenotype. Here, we describe different possible approaches to develop GAGs-based biomaterials, hydrogel, and polymeric viscous solutions in order to assess/develop a suitable biomimetic environment. To sustain MSCs viability and promote their differentiation for potential therapeutic applications.


Subject(s)
Cell Differentiation , Glycosaminoglycans , Mesenchymal Stem Cells , Glycosaminoglycans/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Humans , Hydrogels/chemistry , Cell Culture Techniques/methods , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Cell Survival , Tissue Scaffolds/chemistry , Cells, Cultured , Animals , Tissue Engineering/methods , Cell Proliferation , Biocompatible Materials/chemistry , Adult
3.
Biomimetics (Basel) ; 9(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39056850

ABSTRACT

The aim of this study is to provide an overview of the current state-of-the-art in the fabrication of bioceramic scaffolds for bone tissue engineering, with an emphasis on the use of three-dimensional (3D) technologies coupled with generative design principles. The field of modern medicine has witnessed remarkable advancements and continuous innovation in recent decades, driven by a relentless desire to improve patient outcomes and quality of life. Central to this progress is the field of tissue engineering, which holds immense promise for regenerative medicine applications. Scaffolds are integral to tissue engineering and serve as 3D frameworks that support cell attachment, proliferation, and differentiation. A wide array of materials has been explored for the fabrication of scaffolds, including bioceramics (i.e., hydroxyapatite, beta-tricalcium phosphate, bioglasses) and bioceramic-polymer composites, each offering unique properties and functionalities tailored to specific applications. Several fabrication methods, such as thermal-induced phase separation, electrospinning, freeze-drying, gas foaming, particle leaching/solvent casting, fused deposition modeling, 3D printing, stereolithography and selective laser sintering, will be introduced and thoroughly analyzed and discussed from the point of view of their unique characteristics, which have proven invaluable for obtaining bioceramic scaffolds. Moreover, by highlighting the important role of generative design in scaffold optimization, this review seeks to pave the way for the development of innovative strategies and personalized solutions to address significant gaps in the current literature, mainly related to complex bone defects in bone tissue engineering.

4.
Int J Biol Macromol ; 274(Pt 2): 133447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944073

ABSTRACT

Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin. Additionally, BMSCs derived from bone marrow were integrated into nanofibers, and their wound-regenerative potential was systematically evaluated through both in-vitro and in-vivo methodologies. In-vitro assessments substantiated that BMSC-incorporated nanofibers enhanced cell viability and crucial cellular processes such as adhesion, and proliferation. Subsequently, in-vivo studies were performed to demonstrate the wound-healing efficacy of nanofibers. It was observed that the rate of wound healing of BMSCs incorporated nanofibers surpassed both, nanofiber and BMSCs alone. Furthermore, histomorphological analysis revealed accelerated re-epithelization and improved wound contraction in BMSCs incorporated nanofiber group. The fabricated nanofiber incorporated with BMSCs exhibited superior wound regeneration in animal model and may be utilised as a wound healing patch.


Subject(s)
Gelatin , Mesenchymal Stem Cells , Nanofibers , Polyesters , Tissue Scaffolds , Wound Healing , Nanofibers/chemistry , Mesenchymal Stem Cells/cytology , Gelatin/chemistry , Polyesters/chemistry , Animals , Tissue Scaffolds/chemistry , Rats , Cell Proliferation , Bone Marrow Cells/cytology , Cell Survival , Cell Adhesion , Male
5.
ACS Appl Bio Mater ; 7(7): 4593-4601, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38914048

ABSTRACT

Protein-based ultrafine fibrous scaffolds can mimic the native extracellular matrices (ECMs) with regard to the morphology and chemical composition but suffer from poor mechanical and wet stability. As a result, cells cannot get a true three-dimensional (3D) environment as they find in native ECMs. In this study, an epoxide, ethylene glycol diglycidylether (EGDE), with high reactivity to active hydrogen is introduced to gelatin solution, serving as an effective cross-linker. The gelatin/EGDE 3D-ultrafine (∼500 nm in diameter) fibrous composite scaffolds are made by an ultralow-concentration phase separation technique (ULCPS). The effects of the polymer content and modification conditions on the morphology and wet stability of the constructs are investigated. It is revealed that ultrafine fibers with 3D random orientation could be formed at low concentrations (0.01, 0.05, and 0.1 wt %, respectively). The wet stability of the constructs could be effectively improved by introducing EGDE into the gelatin system. The shrinkage is reduced to merely 2.14% after the modification at 120 °C for 2 h and could be maintained for up to 3 days. In order to improve the compression properties, the same technique is utilized with the presence of a poly(lactic acid) (PLA) spacer fabric to produce a bicomponent scaffold. The mechanical property and cell viability of the bicomponent scaffolds are investigated, and it is found that cells could enter deep inside and orient themselves randomly at the central area of the bicomponent scaffold. The modification and design approach presented in this study has the potential to provide various protein-based ultrafine fibrous biomaterials for a variety of biomedical applications.


Subject(s)
Biocompatible Materials , Gelatin , Materials Testing , Particle Size , Tissue Engineering , Tissue Scaffolds , Gelatin/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Animals , Epoxy Compounds/chemistry , Cell Survival/drug effects , Mice , Humans
6.
Bioelectrochemistry ; 159: 108734, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38762949

ABSTRACT

Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.


Subject(s)
Cell Death , Cell Survival , Electroporation , Metformin , Reactive Oxygen Species , Humans , Metformin/pharmacology , Cell Line, Tumor , Electroporation/methods , Reactive Oxygen Species/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Glucose/metabolism , Cell Culture Techniques, Three Dimensional/methods , Tissue Scaffolds/chemistry , Antineoplastic Agents/pharmacology , MDA-MB-231 Cells
7.
ACS Appl Mater Interfaces ; 16(22): 28263-28275, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788694

ABSTRACT

Intervertebral disc degeneration (IDD) is a progressive condition and stands as one of the primary causes of low back pain. Cell therapy that uses nucleus pulposus (NP)-like cells derived from human induced pluripotent stem cells (hiPSCs) holds great promise as a treatment for IDD. However, the conventional two-dimensional (2D) monolayer cultures oversimplify cell-cell interactions, leading to suboptimal differentiation efficiency and potential loss of phenotype. While three-dimensional (3D) culture systems like Matrigel improve hiPSC differentiation efficiency, they are limited by animal-derived materials for translation, poorly defined composition, short-term degradation, and high cost. In this study, we introduce a new 3D scaffold fabricated using medical-grade chitosan with a high degree of deacetylation. The scaffold features a highly interconnected porous structure, near-neutral surface charge, and exceptional degradation stability, benefiting iPSC adhesion and proliferation. This scaffold remarkably enhances the differentiation efficiency and allows uninterrupted differentiation for up to 25 days without subculturing. Notably, cells differentiated on the chitosan scaffold exhibited increased cell survival rates and upregulated gene expression associated with extracellular matrix secretion under a chemically defined condition mimicking the challenging microenvironment of intervertebral discs. These characteristics qualify the chitosan scaffold-cell construct for direct implantation, serving as both a structural support and a cellular source for enhanced stem cell therapy for IDD.


Subject(s)
Cell Differentiation , Chitosan , Induced Pluripotent Stem Cells , Nucleus Pulposus , Tissue Scaffolds , Chitosan/chemistry , Cell Differentiation/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nucleus Pulposus/cytology , Humans , Tissue Scaffolds/chemistry , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/pathology , Cells, Cultured , Cell Survival/drug effects
8.
Biomedicines ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791011

ABSTRACT

The reconstruction of bone deficiencies remains a challenge due to the limitations of autologous bone grafting. The objective of this study is to evaluate the bone regeneration efficacy of additive manufacturing of tricalcium phosphate (TCP) implants using lithography-based ceramic manufacturing (LCM). LCM uses LithaBone TCP 300 slurry for 3D printing, producing cylindrical scaffolds. Four models of internal scaffold geometry were developed and compared. The in vitro studies included cell culture, differentiation, seeding, morphological studies and detection of early osteogenesis. The in vivo studies involved 42 Wistar rats divided into four groups (control, membrane, scaffold (TCP) and membrane with TCP). In each animal, unilateral right mandibular defects with a total thickness of 5 mm were surgically performed. The animals were sacrificed 3 and 6 months after surgery. Bone neoformation was evaluated by conventional histology, radiology, and micro-CT. Model A (spheres with intersecting and aligned arrays) showed higher penetration and interconnection. Histological and radiological analysis by micro-CT revealed increased bone formation in the grafted groups, especially when combined with a membrane. Our innovative 3D printing technology, combined with precise scaffold design and efficient cleaning, shows potential for bone regeneration. However, further refinement of the technique and long-term clinical studies are crucial to establish the safety and efficacy of these advanced 3D printed scaffolds in human patients.

9.
Nano Lett ; 24(18): 5490-5497, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657179

ABSTRACT

The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.

10.
Small ; : e2400570, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600895

ABSTRACT

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition. The resulting symmetrical cells with these scaffolds, despite with a limited pre-plated Li capacity of 5 mAh cm-2, exhibit ultra-stable Li plating/stripping for over 1 year (11 000 h) at a high current density of 3 mA cm-2 and a high areal capacity of 3 mAh cm-2. Moreover, the full cells with these scaffolds further demonstrate high cycling stability under challenging conditions, including high cathode loading of 21.6 mg cm-2, low negative-to-positive ratio of 1.6, and limited electrolyte-to-capacity ratio of 4.2 g Ah-1.

11.
ACS Appl Mater Interfaces ; 16(14): 17193-17207, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38532651

ABSTRACT

Functionalized ultraviolet photocurable bisphenol A-glycerolate dimethacrylates with tailorable size have been synthesized as the core, which have further been grafted using the diisocyanate chain end of polyurethane (PU) as the shell to create a core-shell structure of tunable size for a controlled drug delivery vehicle. The core-shell structure has been elucidated through spectroscopic techniques like 1H NMR, FTIR, and UV-vis and their relative shape and size through TEM and AFM morphology. The greater cross-link density of the core is reflected in the higher glass transition temperature, and the improved thermal stability of the graft copolymer is proven from its thermogravimetric analyses. The flow behavior and enhanced strength of the graft copolymers have been revealed from rheological measurements. The graft copolymer exhibits sustained release of the drug, as compared to pure polyurethane and photopolymer, arising from its core-shell structure and strong interaction between the copolymer and drug, as observed through a significant shifting of absorption peaks in FTIR and UV-vis measurements. Biocompatibility has been tested for the real application of the novel graft copolymer in medical fields, as revealed from MTT assay, cell imaging, and cell adhesion studies. The efficacy of controlled release from a graft copolymer has been verified from the gradual cell killing and ∼70% killing in 3 days vs meager cell killing of ∼25% very quickly in 1 day, followed by the increased cell viability of the system treated with the pure drug. The mechanism of slow and controlled drug release from the core-shell structure has been explored. The fluorescence images support the higher cell-killing efficiency as opposed to a pure drug or a drug embedded in polyurethane. Cells seeded on 3D scaffolds have been developed by embedding a graft copolymer, and fluorescence imaging confirms the successful growth of cells within the scaffold, realizing the potential of the core-shell graft copolymer in the biomedical arena.


Subject(s)
Drug Carriers , Polyurethanes , Polyurethanes/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Polymers/chemistry
12.
Int J Biol Macromol ; 265(Pt 2): 130710, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492701

ABSTRACT

Developing a polymer-based photocrosslinked 3D printable scaffolds comprised of gelatin methacryloyl (G) and hyaluronic acid methacryloyl (H) incorporated with two molecular weights of polyethylene glycol diacrylate (P) of various concentrations that enables rabbit adipose-derived stem cells (rADSCs) to survive, grow, and differentiate into smooth muscle cells (SMCs). Then, the chemical modification and physicochemical properties of the PGH bioinks were evaluated. The cell viability was assessed via MTT, CCK-8 assay and visualized employing Live/Dead assay. In addition, the morphology and nucleus count of differentiated SMCs were investigated by adopting TRAP (tartrate-resistant acid phosphatase) staining, and quantitative RT-PCR analysis was applied to detect gene expression using two different SMC-specific gene markers α-SMA and SM-MHC. The SMC-specific protein markers namely α-SMA and SM-MHC were applied to investigate SMC differentiation ability by implementing Immunocytofluorescence staining (ICC) and western blotting. Moreover, the disk, square, and tubular cellular models of PGH7 (GelMA/HAMA=2/1) + PEGDA-8000 Da, 3% w/v) hybrid bioink were printed using an extrusion bioprinting and cell viability of rADSCs was also analysed within 3D printed square construct practising Live/Dead assay. The results elicited the overall viability of SMCs, conserving its phenotype in biocompatible PGH7 hybrid bioink revealing its great potential to regenerate SMCs associated organs repair.


Subject(s)
Hydrogels , Tissue Scaffolds , Animals , Rabbits , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Gelatin/chemistry , Muscle, Smooth , Phenotype , Stem Cells , Printing, Three-Dimensional , Tissue Engineering/methods
13.
ACS Biomater Sci Eng ; 10(3): 1544-1553, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38369785

ABSTRACT

As attempting personalized medicine, 3D-printed tissue engineering scaffolds are employed to combine with therapeutic proteins/peptides especially in the clinical treatment of infectious diseases, genetic diseases, and cancers. However, current drug-loading methods, such as immersion and encapsulation, usually lead to the burst release of the drugs. To address these issues, we proposed an integrated strategy toward the long-term controlled release of protein. In this study, patient-customized 3D scaffolds incorporated with drug-loaded microspheres were printed to realize the effective delivery of the anti-human papillomavirus (anti-HPV) protein after cervical conization in the treatment of cervical cancer. The 3D-printed scaffold could provide mechanical support to the defect site and ensure local release of the drug to avoid systemic administration. Meanwhile, microspheres serve as functional components to prevent the inactivation of proteins, as well as regulate their release period to meet the time requirement of different treatment courses. The research also utilized bovine serum albumin as a model protein to validate the feasibility of these scaffolds as a generic technology platform. The bioactivity of the released anti-HPV protein was validated using a pseudovirus model, which demonstrated that the microsphere encapsulation would not cause protein denaturation during the scaffold fabrication process. Besides, 3D-printed scaffolds incorporated with carboxylated chitosan microspheres were biocompatible and beneficial for cell attachment, which have been demonstrated by favorable cell viability and better coverage results for HeLa and HFF-1. This study highlights the great potential of scaffolds incorporated with microspheres to serve as tissue engineering candidate products with the function of effective protein delivery in a long-term controlled manner and personalized shapes for clinical trials.


Subject(s)
Chitosan , Humans , Chitosan/pharmacology , Microspheres , Pharmaceutical Preparations , Human Papillomavirus Viruses , Printing, Three-Dimensional
14.
Biomed Mater Eng ; 35(2): 153-163, 2024.
Article in English | MEDLINE | ID: mdl-38363602

ABSTRACT

BACKGROUND: It is imperative to design a suitable material for bone regeneration that emulates the microstructure and compositional framework of natural bone while mitigating the shortcomings of current repair materials. OBJECTIVE: The aim of the study is to synthesize a 3D aerogel scaffold composed of PLCL/gelatin electro-spun nanofiber loaded with Simvastatin and investigate its biocompatibility as well as its performance in cell proliferation and ossification differentiation. METHODS: PLCL/gelatin nanofibers were fabricated in coaxial electrospinning with simvastatin added. Fibers were fragmented, pipetted into molds, frozen, and dried. The morphology of fibers and contact angles in 4 groups of PLCL, PLCL@S, 3D-PLCL, and 3D-PLCL@S was observed and compared. MC3T3-E1 cells were planted at the four materials to observe cell growth status, and ALP and ARS tests were conducted to compare the ossification of cells. RESULTS: TEM scanning showed the coaxial fiber of the inner PLCL and outer gelatin. The mean diameter of the PLCL/gelatin fibers is 561 ± 95 nm and 631 ± 103 nm after the drug loading. SEM showed the fibers in the 3D-PLCL@S group were more curled and loose with more space interlaced. The contact angle in this group was 27.1°, the smallest one. Drug release test demonstrated that simvastatin concentration in the 3D-PLCL@S could remain at a relatively high level compared to the control group. The cell proliferation test showed that MC3T3-EI cells could embed into the scaffold deeply and exhibit higher viability in the 3D-PLCL@S group than other groups. The ossification tests of ALP and ARS also inferred that the 3D-PLCL@S scaffold could offer a better osteogenic differentiation matrix. CONCLUSION: The PLCL/gelatin aerogel scaffold, when loaded with Simvastatin, demonstrates a more pronounced potential in enhancing osteoblast proliferation and osteogenic differentiation. We hypothesize that this scaffold could serve as a promising material for addressing bone defects.


Subject(s)
Nanofibers , Tissue Scaffolds , Tissue Scaffolds/chemistry , Osteogenesis , Simvastatin/pharmacology , Gelatin/chemistry , Bone Regeneration , Nanofibers/chemistry , Cell Differentiation , Tissue Engineering , Polyesters/chemistry , Cell Proliferation
15.
Chembiochem ; 25(7): e202300768, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38353030

ABSTRACT

Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells. Electrospinning has gained in popularity due to its capacity to individually tune chemistry and mechanical properties and as such influence cell attachment, differentiation or maturation. Polyacrylonitrile (PAN) derived electrospun fibres scaffolds have shown exciting potential due to reports of mechanical tunability and biocompatibility. Building on previous work we fabricate here a range of PAN fibre scaffolds with different concentrations of carbon nanotubes. We characterize them in-depth in respect to their structure, surface chemistry and mechanical properties, using scanning electron microscopy, image processing, ultramicrotomic transmission electron microscopy, x-ray nanotomography, infrared spectroscopy, atomic force microscopy and nanoindentation. Together the data demonstrate this approach to enable finetuning the mechanical properties, while keeping the structure and chemistry unaltered and hence offering ideal properties for comparative studies of the cellular mechanobiology. Finally, we confirm the biocompatibility of the scaffolds using primary rat cardiomyocytes, vascular smooth muscle (A7r5) and myoblast (C2C12) cell lines.


Subject(s)
Nanotubes, Carbon , Tissue Scaffolds , Animals , Rats , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Acrylic Resins
16.
ACS Appl Mater Interfaces ; 16(9): 11324-11335, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38406881

ABSTRACT

This study reports the preparation of a novel porous 3D scaffold from agarose-snail mucus (AGSMu) for cartilage tissue repair applications. AG is reported for its unique thermal and mechanical properties, biocompatibility, and biodegradability, making it suitable for biomedical applications. Still, it lacks the cell adhesion properties required for tissue engineering applications. SMu is a complex substance identified to contain glycosaminoglycans (GAGs) and other bioactive molecules that promote wound healing and reduce cartilage deterioration and inflammation. Hence, porous 3D blend scaffolds containing AG and SMu were prepared by the freeze-drying method, characterized, and investigated for bioactive effects on human chondrocyte (C28/I2) cells. The scaffolds had a microporous structure with an average pore size of 245 µm. FTIR spectroscopy showed that SMu was successfully incorporated into the scaffolds. The SMu increased the mechanical strength of the composite scaffolds by more than 80% compared to the pristine AG scaffold. The scaffolds were found to be biocompatible with tunable degradation. The human chondrocyte cells attached and proliferated well on the 3D scaffolds in a few days, demonstrating a marked improvement in adhesion due to the presence of SMu. Enhanced cell adhesion and mechanical properties of 3D porous AG scaffolds could make them suitable for articular cartilage repair and regeneration.


Subject(s)
Cartilage, Articular , Chondrocytes , Humans , Sepharose , Tissue Scaffolds/chemistry , Porosity , Tissue Engineering
17.
J Biomater Sci Polym Ed ; 35(1): 1-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773043

ABSTRACT

The objective of this study is to establish strategies to uniformly proliferate cells in a three-dimensional nonwoven polyethylene terephthalate (PET)/ethylene vinyl alcohol (EVOH) scaffold by simple adjustments in seeding and culture methods and the scaffold design. The combined dynamic and static seeding (intermittent agitations at 300 rpm with 1 h interval) resulted in the highest seeding efficiency (71%) comparing to the static and continuous agitating seeding methods. Cell-attached scaffolds were cultivated under different conditions. The stirring culture permitted cells to proliferate to a significantly greater extent than the static or agitating cultures, although faster cell proliferation in the outer region of the scaffold was observed. Next, based on this observation, scaffolds were opened with holes to alleviate the cell aggregation. The effect of hole size and number of scaffolds on the distribution of cells proliferated in the scaffold was evaluated. Two of 1-mm holes showed to be an optimal adjustment to allow cells to proliferate in a homogeneous manner. After 14 days culture, both of the holes were filled by cells proliferated with a fourfold increase in the cell number. The cell viability in the scaffolds was also high upon evaluating the live/dead and 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) staining examinations. Different cell types of 3T3-L1, C3H/10T1/2, and KUM6 cells showed similar behavior of cell proliferation and distribution in the scaffold, indicating the applicability of the established procedure. It is concluded that the nonwoven PET/EVOH scaffold serves as a potential cell culture substrate for an efficient cell proliferation.


Subject(s)
Cell Culture Techniques , Polymers , Cell Culture Techniques/methods , Polyethylene Terephthalates , Cell Proliferation , Cell Survival , Tissue Engineering/methods , Tissue Scaffolds , Cells, Cultured
18.
Adv Healthc Mater ; 13(6): e2302786, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37837308

ABSTRACT

Animal-derived basement-membrane matrices such as Geltrex are used to grow cells and tissues. Particularly, these are commonly applied to support tumor growth in animals for cancer research. However, a material derived from an animal source has an undefined composition, and may thus have unavoidable batch-to-batch variation in properties. To overcome these issues, a series of synthetic short peptides to form hydrogels is designed in combination with gelatin to promote cell adhesion and growth. The peptides have sequences of (X1Y1X2Y2)2 , where X1 and X2 are hydrophobic residues, while Y1 and Y2 are hydrophilic residues. The peptides spontaneously fold and self-assemble into a ß-sheet secondary structure upon contact with salts, and then aggregate to form hydrophilic networks of hydrogels. Hybrid hydrogels formed by mixing the peptide IEVEIRVK (IVK8) with gelatin are injectable and enzymatically degradable. The hybrid hydrogels at optimal compositions support SW480 and HepG2 tumor spheroid growth in vitro as effectively as Geltrex. More importantly, the peptide/gelatin hydrogels support tumor growth in a SW480 human colorectal adenocarcinoma xenograft mouse model. Altogether, the results illustrate that the synthetic peptide/gelatin hybrid hydrogel is a promising scaffold that can be used to support cell and tissue growth both in vitro and in vivo.


Subject(s)
Colorectal Neoplasms , Gelatin , Humans , Animals , Mice , Basement Membrane , Disease Models, Animal , Hydrogels/pharmacology , Peptides/pharmacology
19.
Int J Biol Macromol ; 254(Pt 1): 127556, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884249

ABSTRACT

The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.


Subject(s)
Biocompatible Materials , Nanocomposites , Biocompatible Materials/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Gelatin/chemistry , Nanocomposites/chemistry
20.
Chemistry ; 30(1): e202302481, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37823243

ABSTRACT

The increasing prevalence of neurodegenerative diseases has spurred researchers to develop advanced 3D models that accurately mimic neural tissues. Hydrogels stand out as ideal candidates as their properties closely resemble those of the extracellular matrix. A critical challenge in this regard is to comprehend the influence of the scaffold's mechanical properties on cell growth and differentiation, thus enabling targeted modifications. In light of this, a synthesis and comprehensive analysis of acrylamide-based hydrogels incorporating a peptide has been conducted. Adequate cell adhesion and development is achieved due to their bioactive nature and specific interactions with cellular receptors. The integration of a precisely controlled physicochemical hydrogel matrix and inclusion of the arginine-glycine-aspartic acid peptide sequence has endowed this system with an optimal structure, thus providing a unique ability to interact effectively with biomolecules. The analysis fully examined essential properties governing cell behavior, including pore size, mechanical characteristics, and swelling ability. Cell-viability experiments were performed to assess the hydrogel's biocompatibility, while the incorporation of grow factors aimed to promote the differentiation of neuroblastoma cells. The results underscore the hydrogel's ability to stimulate cell viability and differentiation in the presence of the peptide within the matrix.


Subject(s)
Hydrogels , Tissue Engineering , Tissue Engineering/methods , Hydrogels/chemistry , Peptides/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Cell Adhesion
SELECTION OF CITATIONS
SEARCH DETAIL