Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573
Filter
1.
Int J Biol Macromol ; 280(Pt 2): 135817, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306157

ABSTRACT

Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.

2.
Hereditas ; 161(1): 34, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285452

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) and 5-methylcytosine (m5C) play a role in modifying long non-coding RNAs (lncRNAs) implicated in tumorigenesis and progression. This study was performed to evaluate prognostic value of m6A- and m5C-related lncRNAs and develop an efficient model for prognosis prediction in cervical cancer (CC). METHODS: Using gene expression data of TCGA set, we identified m6A- and m5C-related lncRNAs. Consensus Clustering Analysis was performed for samples subtyping based on survival-related lncRNAs, followed by analyzing tumor infiltrating immune cells (TIICs). Optimal signature lncRNAs were obtained using lasso Cox regression analysis for constructing a prognostic model and a nomogram to predict prognosis. RESULTS: We built a co-expression network of 23 m6A-related genes, 15 m5C-related genes, and 62 lncRNAs. Based on 9 m6A- and m5C-related lncRNAs significantly associated with overall survival (OS) time, two molecular subtypes were obtained, which had significantly different OS time and fractions of TIICs. A prognostic model based on six m6A- and m5C-related signature lncRNAs was constructed, which could dichotomize patients into two risk subgroups with significantly different OS time. Prognostic power of the model was successfully validated in an independent dataset. We subsequently constructed a nomogram which could accurately predict survival probabilities. Drug sensitivity analysis found preferred chemotherapeutic agents for high and low-risk patients, respectively. CONCLUSION: Our study reveals that m6A- and m5C-related lncRNAs are associated with prognosis and immune microenvironment of CC. The m6A- and m5C-related six-lncRNA signature may be a useful tool for survival stratification in CC and open new avenues for individualized therapies.


Subject(s)
5-Methylcytosine , Adenosine , RNA, Long Noncoding , Uterine Cervical Neoplasms , RNA, Long Noncoding/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/genetics , Adenosine/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/diagnosis , Female , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Nomograms , Biomarkers, Tumor/genetics , Gene Expression Profiling
3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273414

ABSTRACT

As the most common and aggressive primary malignant brain tumor, glioblastoma is still lacking a satisfactory curative approach. The standard management consisting of gross total resection followed by radiotherapy and chemotherapy with temozolomide only prolongs patients' life moderately. In recent years, many therapeutics have failed to give a breakthrough in GBM treatment. In the search for new treatment solutions, we became interested in the repurposing of existing medicines, which have established safety profiles. We focused on the possible implementation of well-known drugs, metformin, and arginine. Metformin is widely used in diabetes treatment, but arginine is mainly a cardiovascular protective drug. We evaluated the effects of metformin and arginine on total DNA methylation, as well as the oxidative stress evoked by treatment with those agents. In glioblastoma cell lines, a decrease in 5-methylcytosine contents was observed with increasing drug concentration. When combined with temozolomide, both guanidines parallelly increased DNA methylation and decreased 8-oxo-deoxyguanosine contents. These effects can be explained by specific interactions of the guanidine group with m5CpG dinucleotide. We showed that metformin and arginine act on the epigenetic level, influencing the foreground and potent DNA regulatory mechanisms. Therefore, they can be used separately or in combination with temozolomide, in various stages of disease, depending on desired treatment effects.


Subject(s)
Arginine , DNA Methylation , Drug Repositioning , Glioblastoma , Metformin , Temozolomide , Metformin/pharmacology , Metformin/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Arginine/metabolism , Drug Repositioning/methods , DNA Methylation/drug effects , Cell Line, Tumor , Temozolomide/therapeutic use , Temozolomide/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Oxidative Stress/drug effects , Epigenesis, Genetic/drug effects , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives
4.
Future Oncol ; : 1-16, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345093

ABSTRACT

Aim: To delineate the RNA-5-methylcytosine (m5C) modification of breast cancer brain metastasis (BCBM).Methods: Methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) was performed to obtain RNA-m5C patterns of BCBM.Results: 1048 hypermethylation and 1866 hypomethylation m5C peaks were identified in BCBM compared with those in breast cancer. The most significant m5C hypermethylated genes included ENG, SHANK1, IGFN1, EVL and MMP9, whereas the most significant m5C hypomethylated genes included AREG, SAA2, TP53I11, KRT7 and LCN2. MeRIP-qPCR data were concordant with the corresponding MeRIP-seq results in terms of the observed m5C levels. Conjoint analysis identified 190 hyper-up genes characterized by concurrent m5C hypermethylation and up-regulation, alongside 284 hypo-down genes exhibiting both m5C hypomethylation and down-regulation.Conclusion: This study presents the first comprehensive analysis of RNA-m5C modification in BCBM.


[Box: see text].

5.
Int J Biol Sci ; 20(12): 4853-4871, 2024.
Article in English | MEDLINE | ID: mdl-39309431

ABSTRACT

Background: By regulating the functions of multiple RNAs, 5-methylcytosine (m5C) RNA methylation, particularly mediated by NOP2, is involved in tumorigenesis and developments. However, the specific functions and potential mechanisms of m5C, especially involving NOP2, in clear-cell renal cell carcinoma (ccRCC), remain unclear. Methods: NOP2 expression in cell lines and patient tissues was detected using western blotting, quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry. The biological effects of NOP2 on ccRCC cells were investigated through a series of in vitro and in vivo experiments. To explore the potential regulatory mechanisms by which NOP2 affects ccRCC progression, m5C bisulfite sequencing, RNA-sequencing, RNA immunoprecipitation and methylated RNA immunoprecipitation (RIP/MeRIP) RT-qPCR assay, luciferase reporter assay, RNA stability assay, and bioinformatic analysis were performed. Results: NOP2 expression was significantly upregulated in ccRCC tissues and was associated with poor prognosis. Moreover, loss-of-function and gain-of-function assays demonstrated that NOP2 altered ccRCC cell proliferation, migration, and invasion. Mechanistically, NOP2 stimulated m5C modification of apolipoprotein L1 (APOL1) mRNA, and m5C reader YBX1 stabilized APOL1 mRNA through recognizing and binding to m5C site in the 3'-untranslated regions. Silencing APOL1 expression inhibited ccRCC cell proliferation in vitro and tumor formation in vivo. Furthermore, NOP2/APOL1 affected ccRCC progression via the PI3K-Akt signaling pathway. Conclusion: NOP2 functions as an oncogene in ccRCC by promoting tumor progression through the m5C-dependent stabilization of APOL1, which in turn regulates the PI3K-Akt signaling pathway, suggesting a potential therapeutic target for ccRCC.


Subject(s)
Apolipoprotein L1 , Carcinoma, Renal Cell , Kidney Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Messenger , Humans , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Line, Tumor , Apolipoprotein L1/metabolism , Apolipoprotein L1/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , 5-Methylcytosine/metabolism , Animals , Cell Proliferation/genetics , Mice, Nude , Male , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Signal Transduction , Cell Movement/genetics
6.
Indian J Clin Biochem ; 39(4): 572-578, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39346715

ABSTRACT

This study investigated the diagnostic accuracy (DA) and clinical utility (CU) of DNA methylation (5 methylcytosine) in occupational Pb-exposure from Pb based industry. Blood Lead levels (BLLs) were measured using the ICP-OES method. The total DNA methylation (5-mC) was quantified using ELISA method. Based on their BLLs, the Pb-exposed workers were categorised into three groups: low (< 10 µg/dL), moderate (10-30 µg/dL), and high exposure (> 30 µg/dL). DNA methylation (5-mC) was significantly lower in moderate and high Pb-exposure groups when compared to the low Pb-exposure group. Workers exposed to high levels of Pb-exposure, the DA variables of 5-mC showed that the sensitivity was 74.7% [95% CI 65.4-84.0], specificity was 69.6% [95% CI 50.8-88.4], positive predictive value (PPV) was 89.9% [95% CI 82.7-97.0], Postive likelihood ratio (LR+) was 2.454 [95% CI 1.3-4.6], and diagnostic odds ratio (DOR) is 6.3 [95% CI 6.5-7.7]. In moderate Pb-exposure, the DA variables of 5-mC revealed that the sensitivity is 64.9% [95% CI 55.2-74.5], the specificity is 69.6% [95% CI 50.8-88.4], the PPV is 89.7% [95% CI 82.5-97.0], the LR+ is 2.132 [95% CI 1.13-4.03], and the DOR is 4.2 [95% CI 3.6-5.7]. The high Pb-exposure group had higher DA metrics when compared to moderate Pb exposure. The clinical utility (CU+) of 5-mC was found to have good utility of 0.671 [95% CI 0.566-0.776] in the high Pb exposure group and fair utility of 0.582 [95% CI 0.470-0.694] in moderate Pb exposure group. In conclusion, DNA methylation (5mC) could be used as a predictive biomarker for high Pb-exposure.

7.
Clin Epigenetics ; 16(1): 125, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261937

ABSTRACT

BACKGROUND: Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS: DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS: Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.


Subject(s)
5-Methylcytosine , Breast Neoplasms , DNA-Binding Proteins , Dioxygenases , Proto-Oncogene Proteins , Humans , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Female , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Carcinogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , DNA Demethylation
8.
Angew Chem Int Ed Engl ; : e202413593, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231378

ABSTRACT

Selective C-H activation on complex biological macromolecules is a key goal in the field of organic chemistry. It requires thermodynamically challenging chemical transformations to be delivered in mild, aqueous conditions. 5-Methylcytosine (5mC) is a fundamentally important epigenetic modification in DNA that has major implications for biology and has emerged as a vital biomarker. Selective functionalisation of 5mC would enable new chemical approaches to tag, detect and map DNA methylation to enhance the study and exploitation of this epigenetic feature. We demonstrate the first example of direct and selective chemical oxidation of 5mC to 5-formylcytosine (5fC) in DNA, employing a photocatalytic system. This transformation was used to selectively tag 5mC. We also provide proof-of-concept for deploying this chemistry for single-base resolution sequencing of 5mC and genetic bases adenine (A), cytosine (C), guanine (G), thymine (T) in DNA on a next-generation sequencing system. This work exemplifies how photocatalysis has the potential to transform the analysis of DNA.

9.
Comput Biol Med ; 182: 109087, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232403

ABSTRACT

Epigenetic modifications, particularly RNA methylation and histone alterations, play a crucial role in heredity, development, and disease. Among these, RNA 5-methylcytosine (m5C) is the most prevalent RNA modification in mammalian cells, essential for processes such as ribosome synthesis, translational fidelity, mRNA nuclear export, turnover, and translation. The increasing volume of nucleotide sequences has led to the development of machine learning-based predictors for m5C site prediction. However, these predictors often face challenges related to training data limitations and overfitting due to insufficient external validation. This study introduces m5C-Seq, an ensemble learning approach for RNA modification profiling, designed to address these issues. m5C-Seq employs a meta-classifier that integrates 15 probabilities generated from a novel, large dataset using systematic encoding methods to make final predictions. Demonstrating superior performance compared to existing predictors, m5C-Seq represents a significant advancement in accurate RNA modification profiling. The code and the newly established datasets are made available through GitHub at https://github.com/Z-Abbas/m5C-Seq.

10.
Front Immunol ; 15: 1439485, 2024.
Article in English | MEDLINE | ID: mdl-39229278

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly aggressive cancer with a poor prognosis. The molecular mechanisms underlying its development remain unclear. Recent studies have highlighted the crucial role of RNA modifications in HCC progression, which indicates their potential as therapeutic targets and biomarkers for managing HCC. In this review, we discuss the functional role and molecular mechanisms of RNA modifications in HCC through a review and summary of relevant literature, to explore the potential therapeutic agents and biomarkers for diagnostic and prognostic of HCC. This review indicates that specific RNA modification pathways, such as N6-methyladenosine, 5-methylcytosine, N7-methylguanosine, and N1-methyladenosine, are erroneously regulated and are involved in the proliferation, autophagy, innate immunity, invasion, metastasis, immune cell infiltration, and drug resistance of HCC. These findings provide a new perspective for understanding the molecular mechanisms of HCC, as well as potential targets for the diagnosis and treatment of HCC by targeting specific RNA-modifying enzymes or recognition proteins. More than ten RNA-modifying regulators showed the potential for use for the diagnosis, prognosis and treatment decision utility biomarkers of HCC. Their application value for HCC biomarkers necessitates extensive multi-center sample validation in the future. A growing number of RNA modifier inhibitors are being developed, but the lack of preclinical experiments and clinical studies targeting RNA modification in HCC poses a significant obstacle, and further research is needed to evaluate their application value in HCC treatment. In conclusion, this review provides an in-depth understanding of the complex interplay between RNA modifications and HCC while emphasizing the promising potential of RNA modifications as therapeutic targets and biomarkers for managing HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , RNA Processing, Post-Transcriptional , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Animals , Gene Expression Regulation, Neoplastic , Prognosis , RNA/genetics , RNA/metabolism
11.
Front Mol Neurosci ; 17: 1463437, 2024.
Article in English | MEDLINE | ID: mdl-39268252

ABSTRACT

Brain derived neurotrophic factor (BDNF) is the most studied trophic factor in the central nervous system (CNS), and its role in the maturation of neurons, including synapse development and maintenance has been investigated intensely for over three decades. The primary receptor for BDNF is the tropomyosin receptor kinase B (TrkB), which is broadly expressed as two primary isoforms in the brain; the full length TrkB (TrkB.FL) receptor, expressed mainly in neurons and the truncated TrkB (TrkB.T1) receptor. We recently demonstrated that TrkB.T1 is predominately expressed in astrocytes, and appears critical for astrocyte morphological maturation. Given the critical role of BDNF/TrkB pathway in healthy brain development and mature CNS function, we aimed to identify molecular underpinnings of cell-type specific expression of each TrkB isoform. Using Nanopore sequencing which enables direct, long read sequencing of native DNA, we profiled DNA methylation patterns of the entire TrkB gene, Ntrk2, in both neurons and astrocytes. Here, we identified robust differences in cell-type specific isoform expression associated with significantly different methylation patterns of the Ntrk2 gene in each cell type. Notably, astrocytes demonstrated lower 5mC methylation, and higher 5hmC across the entire gene when compared to neurons, including differentially methylated sites (DMSs) found in regions flanking the unique TrkB.T1 protein coding sequence (CDS). These data suggest DNA methylation patterns may provide instruction for isoform specific TrkB expression across unique CNS cell types.

12.
Genes (Basel) ; 15(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39202427

ABSTRACT

DNA methylation plays an important role in the development and tissue differentiation of eukaryotes. In this study, bisulfite sequencing (BS-seq) technology was used to analyze the DNA methylation profiles of liver tissues taken from Rongchang pigs at three postnatal feeding stages, including newborn, suckling, and adult. The DNA methylation pattern across the genomes or genic region showed little difference between the three stages. We observed 419 differentially methylated regions (DMRs) in promoters, corresponding to 323 genes between newborn and suckling stages, in addition to 288 DMRs, corresponding to 134 genes, between suckling and adult stages and 351 DMRs, corresponding to 293 genes, between newborn and adult stages. These genes with DMRs were mainly enriched in metabolic, immune-related functional processes. Correlation analysis showed that the methylation level of gene promoters was significantly negatively correlated with gene expression. Further, we found that genes related to nutritional metabolism, e.g., carbohydrate metabolism (FAHD1 and GUSB) or fatty acid metabolism (LPIN1 and ACOX2), lost DNA methylation in their promoter, with mRNA expression increased in newborn pigs compared with those in the suckling stage. A few fatty acid metabolism-related genes (SLC27A5, ACOX2) were hypomethylated and highly expressed in the newborn stage, which might satisfy the nutritional requirements of Rongchang pigs with high neonatal birth rates. In the adult stage, HMGCS2-which is related to fatty acid ß-oxidation-was hypomethylated and highly expressed, which explains that the characteristics of high energy utilization in adult Rongchang pigs and their immune-related genes (CD68, STAT2) may be related to the establishment of liver immunity. This study provides a comprehensive analysis of genome-wide DNA methylation patterns in pig liver postnatal development and growth. Our findings will serve as a valuable resource in hepatic metabolic studies and the agricultural food industry.


Subject(s)
DNA Methylation , Liver , Promoter Regions, Genetic , Animals , Liver/metabolism , Liver/growth & development , Swine/growth & development , Swine/genetics , Animals, Newborn/growth & development , Gene Expression Regulation, Developmental , Epigenesis, Genetic
13.
Trends Biochem Sci ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39181838

ABSTRACT

Mitochondrial double-stranded RNA (dsRNA) can form spontaneously in mitochondria, blocking mitochondrial gene expression and triggering an immune response. A recent study by Kim, Tan, et al. identified a safeguard mechanism in which NOP2/Sun RNA methyltransferase 4 (NSUN4)-mediated RNA methylation (m5C) recruits the RNA degradation machinery to prevent dsRNA formation.

14.
Discov Med ; 36(187): 1555-1571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39190372

ABSTRACT

As advances in RNA modification research progress, the significance of 5-methylcytosine (m5C) modification is being increasingly acknowledged. m5C undergoes modification by the methyltransferase NOP2/Sun domain (NSUN) family/DNA methyltransferase (DNMT) family (writer) and is removed by demethylases (eraser), including the ten-eleven translocation (TET) family and Alkb homolog 1 (ALKBH1). Moreover, m5C interacts with RNA-binding proteins (reader), such as Y-box-binding protein 1 (YBX1) and Aly/REF export factor (ALYREF). Expanding on this structural framework, m5C modification possesses the capacity to regulate various physiological and pathological processes. Recent studies indicate that m5C plays a pivotal regulatory role in the central nervous system, and its dysregulation may correlate with the onset and progression of various central nervous system diseases. In this review, we summarize recent research on m5C components and delve into the potential mechanisms of m5C involvement in central nervous system disorders, such as Alzheimer's disease, brain tumors, epilepsy, and stroke.


Subject(s)
Central Nervous System Diseases , Humans , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/genetics , 5-Methylcytosine/metabolism , Animals , RNA/metabolism , RNA/genetics
15.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201247

ABSTRACT

Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.


Subject(s)
Breast Neoplasms , Dioxygenases , Gene Expression Regulation, Neoplastic , Selective Estrogen Receptor Modulators , Tamoxifen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Tamoxifen/pharmacology , Tamoxifen/analogs & derivatives , Female , Dioxygenases/genetics , Dioxygenases/metabolism , Selective Estrogen Receptor Modulators/pharmacology , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , DNA Methylation/drug effects , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Tandem Mass Spectrometry
16.
Cell Rep ; 43(8): 114631, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39154342

ABSTRACT

Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.


Subject(s)
Glycosyltransferases , Polysaccharides , Polysaccharides/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , DNA/metabolism
17.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967794

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , DNA Repair , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Signal Transduction , Sorafenib , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , DNA Methylation/drug effects , DNA Repair/drug effects , DNA Repair/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hippo Signaling Pathway , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction/drug effects , Sorafenib/pharmacology , Sorafenib/therapeutic use , Transcription Factors/metabolism , Transcription Factors/genetics , Xenograft Model Antitumor Assays , YAP-Signaling Proteins/metabolism
18.
Cell Biosci ; 14(1): 89, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965641

ABSTRACT

Allergic diseases, characterized by a broad spectrum of clinical manifestations and symptoms, encompass a significant category of IgE-mediated atopic disorders, including asthma, allergic rhinitis, atopic dermatitis, and food allergies. These complex conditions arise from the intricate interplay between genetic and environmental factors and are known to contribute to socioeconomic burdens globally. Recent advancements in the study of allergic diseases have illuminated the crucial role of DNA methylation (DNAm) in their pathogenesis. This review explores the factors influencing DNAm in allergic diseases and delves into their mechanisms, offering valuable perspectives for clinicians. Understanding these epigenetic modifications aims to lay the groundwork for improved early prevention strategies. Moreover, our analysis of DNAm mechanisms in these conditions seeks to enhance diagnostic and therapeutic approaches, paving the way for more effective management of allergic diseases in the future.

19.
Pharmacol Res ; 207: 107305, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002868

ABSTRACT

Cardiomyopathy (CM) represents a heterogeneous group of diseases primarily affecting cardiac structure and function, with genetic and epigenetic dysregulation playing a pivotal role in its pathogenesis. Emerging evidence from the burgeoning field of epitranscriptomics has brought to light the significant impact of various RNA modifications, notably N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), 2'-O-methylation (Nm), and 6,2'-O-dimethyladenosine (m6Am), on cardiomyocyte function and the broader processes of cardiac and vascular remodelling. These modifications have been shown to influence key pathological mechanisms including mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis, inflammation, immune response, and myocardial fibrosis. Importantly, aberrations in the RNA methylation machinery have been observed in human CM cases and animal models, highlighting the critical role of RNA methylating enzymes and their potential as therapeutic targets or biomarkers for CM. This review underscores the necessity for a deeper understanding of RNA methylation processes in the context of CM, to illuminate novel therapeutic avenues and diagnostic tools, thereby addressing a significant gap in the current management strategies for this complex disease.


Subject(s)
Cardiomyopathies , Epigenesis, Genetic , RNA , Humans , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/therapy , RNA/genetics , RNA/metabolism , Methylation , RNA Methylation
20.
DNA Repair (Amst) ; 141: 103712, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959714

ABSTRACT

Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.


Subject(s)
5-Methylcytosine , Cytosine , DNA Methylation , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/metabolism , Cytosine/metabolism , Cytosine/analogs & derivatives , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , DNA Repair , DNA Damage , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA Polymerase iota , DNA/metabolism , Multifunctional Enzymes/metabolism , DNA Replication , 8-Hydroxy-2'-Deoxyguanosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL