Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.329
Filter
1.
Br J Pharmacol ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354889

ABSTRACT

This brief review highlights some of the structure-activity relationships of classic serotonergic psychedelics. In particular, we discuss structural features of three chemotypes: phenethylamines, ergolines and certain tryptamines, which possess psychedelic activity in humans. Where they are known, we point out the underlying molecular mechanisms utilized by each of the three chemotypes of psychedelic molecules. With a focus on the 5-HT2A receptor subtype, a G-protein coupled receptor known to be the primary target of psychedelics, we refer to several X-ray and cryoEM structures, with a variety of ligands bound, to illustrate the underlying atomistic basis for some of the known pharmacological observations of psychedelic drug actions.

2.
Chem Biodivers ; : e202401663, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352146

ABSTRACT

This study investigated the anxiolytic and anticonvulsant effects and safety profile of limonene enantiomers and their oxidized derivatives. The toxicity test was performed by monitoring the animals for 96 hours, with no deaths or significant toxicity observed up to the highest dose, which allowed the determination of the LD50. Doses of 4, 20 and 40 mg/kg were tested, with no toxicity observed up to 96h (LD50 > 40 mg/kg). Anxiolytic activity was measured in a preference test for light and dark areas, and the effect of the compounds was evaluated in the presence of serotonergic antagonists. The (S)-(-)-LIM and (R)-(+)-LIM enantiomers showed anxiolytic effects, with (S)-(-)-LIM being effective at all doses. In the anticonvulsant test, the oxidized derivatives, such as perilyl acid (PAC), significantly delayed PTZ-induced seizures, an effect blocked by flumazenil (FMZ). The oxidized derivatives, especially perilyl acid (PAC), showed anxiolytic effects at all doses and significantly delayed the three PTZ-induced seizure events. This effect was blocked by FMZ, suggesting a relationship between PAC and the GABAergic pathway. PAC, being the most oxidized derivative, was the most effective for both anxiety and delaying seizure progression, suggesting that oxidation of limonene compounds may increase their therapeutic efficacy.

3.
J Ethnopharmacol ; : 118734, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374877

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mulberry leaf (Folium Mori) is a dried leaf of the dicotyledonous mulberry tree and is a homologous food and medicine. Treating insomnia with it is a common practice in traditional Chinese medicine. But still, its potential sleep-improving mechanism remains to be elucidated. AIM OF REVIEW: Potential bioactive components and mechanisms of the sleep-improving effect of purified flavone from mulberry leaves (MLF) were explored through in vivo experiments, network pharmacology analysis, and molecular experimental validation. MATERIALS AND METHODS: The mice model was established by pentobarbital sodium induction to evaluate the sleep-improving effect of MLF. The MLF's chemical composition was identified through a liquid chromatograph quadrupole time-of-flight mass spectrometer (Q-TOF LC/MS) to elucidate its sleep-improving active ingredient. At last, the underlying mechanism of MLF's sleep-improving effect was elucidated through neurotransmitter detection (ELISA), network pharmacology analysis, and molecular experimental validation (quantitative real-time PCR and western blotting). RESULTS: MLF could dramatically reduce sleep latency by 35%, prolong sleep duration by 123%, and increase the sleep rate of mice through increasing γ-aminobutyric acid (GABA) and serotonin (5-HT) release in serum, hypothalamus, and hippocampus. Q-TOF LC/MS identified 16 flavonoid components in MLF. Network pharmacological analysis suggested that the key sleep-improving active ingredients in MLF might be quercetin, kaempferol, morin, and delphinidin. The key path for MLF to improve sleep might be the tryptophan metabolism and neuroactive ligand-receptor interaction, and the key targets might be gamma-aminobutyric acid type A receptor subunit alpha2 Gene (GABRA2) and serotonin 1A (5-HT1A) receptors. CONCLUSIONS: MLF has shown significant sleep-improving effects in mice and may take effect through regulating the GABA and 5-HT receptors.

4.
Clin Neurol Neurosurg ; 246: 108569, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39368391

ABSTRACT

BACKGROUND: Postoperative nausea and vomiting (PONV) are common and distressing complications following neurosurgical procedures, affecting up to 73 % of patients undergoing craniotomy. Therefore, we aimed to assess the placebo-controlled efficacy of 5-HT3 antagonists to prevent PONV following supratentorial craniotomies. METHODS: We searched Medline, Web of Science, and Embase databases following PRISMA guidelines for RCTs comparing the outcomes of prophylactic use of 5-HT3 antagonists with placebo to prevent PONV following supratentorial craniotomy. We pooled odds ratios (OR) with 95 % confidence intervals with a random-effects model. I2 statistics was used to assess heterogeneity. RESULTS: Five RCTs, comprising 347 patients, of which 145 received a placebo, were included. The analysis identified a lower likelihood of early postoperative vomiting in 5-HT3 antagonists group (OR=0.47; 95 % CI: 0.24-0.91, p<0.05; I2=7 %), a lower likelihood of vomit within the 24-h period in 5-HT3 antagonists group (OR=0.27; 95 % CI: 0.15-0.48, p<0.01; I2=40 %), a lower likelihood of nausea within the 24-h period in 5-HT3 antagonists group (OR=0.47; 95 % CI: 0.28-0.72, p<0.01; I2=34 %), and a lower likelihood of rescue interventions in 5-HT3 antagonists group (OR = 0.18; 95 % CI: 0.10-0.34; I2 = 0 %. Subgroup analyses focusing on ondansetron also identified a lower likelihood of nausea and vomiting within the 24-h period in the 5-HT3 antagonist group. CONCLUSION: This systematic review and meta-analysis identified that 5-HT3 antagonists are effective in preventing PONV in the postoperative period following supratentorial craniotomy when compared to placebo. Our findings provide synthesized and robust evidence derived from randomized studies to support the use of 5-HT3 antagonists in clinical practice.

5.
ACS Chem Neurosci ; 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370752

ABSTRACT

Neuropathic pain is a prevalent complication following brachial plexus avulsion (BPA). Ferroptosis has been implicated in various nervous system disorders. However, the association between ferroptosis and neuropathic pain induced by BPA remains unclear. This study aimed to investigate the role of ferroptosis in BPA-induced neuropathic pain. A rat model of neuropathic pain was established via BPA induction. Pain thresholds of rats were measured after BPA surgery and intraperitoneal injection of Fer-1. On day 14 postsurgery, spinal dorsal horn (SDH) samples were collected for Western blotting, biochemical analysis, and immunohistochemistry to analyze the expression and distribution of ferroptosis-related markers. The relationships among 5-HT3a receptor, calcium/calmodulin (CaM) pathway, and ferroptosis were assessed via Western blotting, biochemical analysis, and lipid peroxidation assays, including iron and calcium content, reactive oxygen species, glutathione peroxidase 4 (GPX4), ACSL, and CaM expression. BPA-induced neuropathic pain was associated with iron accumulation, increased lipid peroxidation, dysregulated expression of Acyl-CoA synthetase long-chain family member 4, and GPX4, and changes in transferrin receptor, divalent metal transporter 1, and ferroportin-1 (FPN1). Intraperitoneal administration of Fer-1 reversed all of these alterations and mitigated mechanical and cold hypersensitivity. Inhibition of the 5-HT3a receptor reduced the extent of ferroptosis. Furthermore, the 5-HT3a receptor can regulate the calcium/CaM pathway via L-type calcium channels (LTCCs), and blocking LTCCs with nifedipine also alleviated ferroptosis in the SDH of BPA rats. Taken together, in rats with BPA, the development of neuropathic pain involves ferroptosis, which is regulated by the 5-HT3a receptor through the LTCCs and the calcium/CaM signaling pathway in the SDH.

6.
Psychiatr Danub ; 36(Suppl 2): 134-148, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39378462

ABSTRACT

Depression astonishingly can be stopped instantly by electrotherapies or through some psychedelics like psilocybin. In explaining this, the traditional approaches to their antidepressant effects via "reset" models and orthosteric serotonin receptors has neglected the only serotonin channel 5HT3, which e.g. has emerged as being helpful for the neurotrophic translation for all anti-depressants and final synaptic effects. Psychedelics here are confronted with a panorama of also anti-depressant 5HT3-channels and a search for their part e.g. in the "3 pillars" reigning depression. Of these M1) mitochondria, parasitic organelles from a fusion between some proto-bacteria and archae, founding eukaryotes, also through 5HT3 in depression determine much of its somatic crises. Two further pillars, "pushback" and "shame-link", are clarified by the parasympathetic (PS-) conspiciously 5HT3-rich "nasal" pterygo-palatine ganglion (PPG): PPG-1.) Intramural "pushbacks" intoxicating brain's tissues, show up on MRI e.g. along branches of the peri-/subcallosal artery. The brain-draining circular chambers, by CIMURAF, are plausibly driven by the PPG (and other PS-ganglia) through their dense nitrergic grid, causing loose wrung areas creating hyperboloid stenoses where they delimit contracted sliding segments PPG-2.) Existential conflicts trigger last-resort attacks, whereby the subduing are stopped into submissive shame. This plausibly occurs via the antidromic "Suzuki-link" from preparatory attack-biting (V3) via the trigeminal ggl. V3-V2-crosstalk onto the PPG, which, blushing via PACAP, maybe via MCs opens the BBB causing foggy confusion. Mushrooms may have acquired psilocybin to similarly stop feeding moves of worms (C. elegans) via the >100 5HT3-like ion channels. While on MOD-1 serotonin elicits "dwelling", collective feeding on just one fungus, psilocin could on promote audacious "roaming" (protecting fungi) - channel LGC-50 learning from this. The biphasic and pervasive H2S, being a dipole, might be flushed by ECT and on the 5HT3-receptors might get worms (and us) to move.


Subject(s)
Electroconvulsive Therapy , Hallucinogens , Psilocybin , Receptors, Serotonin, 5-HT3 , Humans , Psilocybin/pharmacology , Psilocybin/therapeutic use , Electroconvulsive Therapy/methods , Receptors, Serotonin, 5-HT3/drug effects , Receptors, Serotonin, 5-HT3/physiology , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Depressive Disorder/drug therapy , Depressive Disorder/therapy
7.
Brain Commun ; 6(5): fcae291, 2024.
Article in English | MEDLINE | ID: mdl-39355002

ABSTRACT

Psychosis and visual hallucinations are a prevalent non-motor symptom of Parkinson's disease, negatively affecting patients' quality of life and constituting a greater risk for dementia. Understanding neural mechanisms associated to these symptoms is instrumental for treatment development. The mismatch negativity is an event-related potential evoked by a violation in a sequence of sensory events. It is widely considered an index of sensory change-detection. Reduced mismatch negativity response is one of the most replicated results in schizophrenia and has been suggested to be a superior psychosis marker. To understand whether this event-related potential component could be a similarly robust marker for Parkinson's psychosis, we used electroencephalography with a change-detection task to study the mismatch negativity in the visual modality in 20 participants with Parkinson's and visual hallucinations and 18 matched Parkinson's participants without hallucinations. We find that visual mismatch negativity is clearly present in participants with Parkinson's disease without hallucinations at both parieto-occipital and frontal sites, whereas participants with Parkinson's and visual hallucinations show reduced or no differences in the two waveforms, confirming the sensitivity of mismatch negativity to psychosis, even within the same diagnostic group. We also explored the relationship between hallucination severity and visual mismatch negativity amplitude, finding a negative correlation between visual hallucinations severity scores and visual mismatch negativity amplitude at a central frontal and a parieto-occipital electrodes, whereby the more severe or complex (illusions, formed visual hallucinations) the symptoms the smaller the amplitude. We have also tested the potential role of the serotonergic 5-HT2A cascade in visual hallucinations in Parkinson's with these symptoms, following the receptor trafficking hypothesis. We did so with a pilot study in healthy controls (N = 18) providing support for the role of the Gi/o-dependent pathway in the psychedelic effect and a case series in participants with Parkinson's and visual hallucinations (N = 5) using a double-blind crossover design. Positive results on psychosis scores and mismatch amplitude add further to the potential role of serotonergic modulation of visual hallucinations in Parkinson's disease.

8.
Neuropharmacology ; : 110181, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393590

ABSTRACT

Rodents have a strong motivation for wheel running; however, the neural mechanisms that regulate their motivation remain unknown. We investigated the possible involvement of serotonin (5-HT) systems in regulating motivation for wheel running in male mice. Systemic administration of a 5-HT1A receptor antagonist (WAY100635) increased the number of wheel rotations, whereas administration of a 5-HT2A or 5-HT2C receptor antagonist (volinanserin or SB242084, respectively) decreased it. In the open field test, neither WAY100635 nor volinanserin affected locomotor activity, whereas SB242084 increased locomotor activity. To identify the brain regions on which these antagonists act, we locally injected these into the motivational circuitry, including the nucleus accumbens (NAc), dorsomedial striatum (DM-Str), and medial prefrontal cortex (mPFC). Injection of SB242084 into the NAc, but not the DM-Str or mPFC, reduced the number of wheel rotations without altering locomotor activity. The local administration of WAY100635 or volinanserin to these brain regions did not affect the number of wheel rotations. Immunohistochemical analyses revealed that wheel running increased the number of c-Fos-positive cells in the NAc medial shell (NAc-MS), which was reduced by systemic SB242084 administration. In vitro slice whole-cell recordings showed that bath application of the 5-HT2C receptor agonist lorcaserin increased the frequency of spontaneous excitatory and inhibitory postsynaptic currents in the ventral tegmental area (VTA)-projecting neurons, whereas it only increased the frequency of spontaneous excitatory postsynaptic currents in ventral pallidum (VP)-projecting neurons in the NAc-MS. These findings suggest that the activation of VP-projecting NAc-MS neurons via 5-HT2C receptor stimulation regulates motivation for wheel running.

9.
Bipolar Disord ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218660

ABSTRACT

OBJECTIVES: Antidepressants used by patients with bipolar disorder have been associated with destabilization with an increase in mania, depression, and cycling. The most commonly proposed mechanism, that antidepressants 'overshoot' their antidepressant effect to create a manic or mixed state, is unlikely since antidepressants have actually been found to be ineffective in treating bipolar depression. Beginning with known bipolar-specific pathophysiologic abnormalities provides the greatest likelihood of insight. METHODS: PubMed was queried with 'bipolar', 'sodium', 'intracellular sodium', 'serotonin 3', '5HT3', '5-hydroxytryptamine type 3 receptors', and 'antidepressant' either individually or in combination. RESULTS: Pathologic mood states (both mania and depression) are associated with increased intracellular sodium (Na) concentrations that depolarize the resting membrane potential to increase cellular excitability (mania) or cause depolarization block (depression). Stimulation of the serotonin (5HT) receptors depolarizes the post-synaptic neuron. Stimulation of 5HT3 may be of particular importance since it is coupled to a cation channel that directly depolarizes the membrane. These effects directly impact the physiology of patients with bipolar disorder to alter neuronal excitability in a fashion that worsens both mania and depression. PROPOSED CONCEPT: The most consistently observed biological abnormality in individuals going through mania or bipolar depression involves a decline in Na pump activity, with consequent elevation of intracellular Na levels. Antidepressant treatment potentiates this, particularly by activation of 5HT3. This hypothesis can be tested by coadministering a 5HT3 antagonist (e.g., vortioxetine or ondansetron) to achieve blockade of that receptor while treating bipolar depression with a serotoninergic antidepressant.

10.
Br J Pharmacol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238235

ABSTRACT

BACKGROUND AND PURPOSE: The emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5-HT in the antidepressant effects of ketamine remains unclear. EXPERIMENTAL APPROACH: The chronic restraint stress procedure was performed to induce depression-like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant-like effects of ketamine. Tph2 knockout or depletion of 5-HT by PCPA and 5,7-DHT were used to manipulate the brain 5-HT system. ELISA and fibre photometry recordings were used to measure extracellular 5-HT levels in the brain. KEY RESULTS: 60 min after injection, ketamine (10 mg·kg-1, i.p.) produced rapid antidepressant-like effects and increased brain 5-HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5-HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant-like effects of ketamine were abrogated by PCPA and 5,7-DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg-1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5-HT levels and abolished the sustained antidepressant-like effects of ketamine in naïve or CRS-treated mice. CONCLUSION AND IMPLICATIONS: This study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant-like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.

11.
Article in English | MEDLINE | ID: mdl-39230588

ABSTRACT

The precise diagnosis of mental disorders constitutes a formidable problem. Mental disorders are currently diagnosed based on clinical symptoms, which are often subjective. Various drug classes, traditionally referred to as "antidepressants," "antipsychotics" and "mood stabilizers" are then used empirically to treat affected patients. The previous decade has witnessed an increasing extension of the use of drug classes beyond their traditional indications (e.g., "antidepressants" in the treatment of anxiety disorders). Therefore, we would like to initiate a discussion in the pharmacological and psychiatric research communities on an alternative classification of mental disorders: Instead of using the traditional categorical classification of mental disorders physicians should rather diagnose symptoms (e.g., anhedonia) without bias to a traditional categorization (e.g., depression). The appropriate most effective drugs are then selected based on these symptoms. Depending on the responsiveness of the patient towards a given drug X, the disease should be classified, e.g., as drug X-responsive disease. This approach will also help us elucidate the still poorly understood molecular mechanisms underlying mental disorders, i.e., drugs can also be viewed and used as molecular diagnostic tools. In several fields of medicine, drugs are already used as molecular diagnostic tools. Thus, there is already precedence for the concept proposed here for mental disorders.

12.
Article in English | MEDLINE | ID: mdl-39279695

ABSTRACT

The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.

13.
Neurochem Res ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271550

ABSTRACT

Neuroinflammation-related locomotor deficits and neuropathic pain are expected outcomes of spinal cord injury (SCI). The atypical antidepressant mirtazapine has exhibited potential neuroprotective and anti-inflammatory effects. This research aims to investigate the impacts of mirtazapine on post-SCI neuropathic pain and locomotor recovery, with a particular focus on neuroinflammation. The study utilized 30 male Wistar rats divided into five groups: Sham, SCI with vehicle treatment, and SCI administered with mirtazapine (3, 10, and 30 mg/kg/day, ip, for one week). Locomotor activity was assessed using the Basso, Beattie, and Bresnahan (BBB) scale. Mechanical, thermal, and cold allodynia were assessed using von-Frey filaments, tail flick latency, and the acetone test, respectively. ELISA was utilized to measure cytokines, while Western blotting was used to determine TRPV1 channel, 5-HT2A receptor, NLRP3, and iNOS expression. Histopathological analyses were also examined, including hematoxylin and eosin (H&E) and Luxol fast blue (LFB) staining. Mirtazapine (10 and 30 mg/kg/day) significantly improved locomotor recovery according to BBB score. It attenuated mechanical, thermal, and cold allodynia post-SCI. Moreover, it decreased pro-inflammatory cytokines TNF-α, IL-1ß, IL-6, and IL-18, while increasing anti-inflammatory cytokine IL-4 and IL-10. Furthermore, it downregulated iNOS, NLRP3, and TRPV1 expression and upregulated the 5-HT2A receptor. H&E and LFB staining further revealed attenuated tissue damage and decreased demyelination. Our findings suggest that mirtazapine can alleviate neuropathic pain and reinforce locomotor recovery post-SCI by modulating neuroinflammatory responses, NLRP3, iNOS, TRPV1 channel, and 5-HT2A receptor expression.

14.
Drug Alcohol Depend ; 263: 112426, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39217832

ABSTRACT

BACKGROUND: Overdose deaths remain high for opioid use disorder, emphasizing the need to pursue innovative therapeutics. Classic psychedelic drugs that engage many monoamine receptors mitigate opioid use. Here, we tested the hypothesis that the preferential serotonin 5-HT2AR agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI) could reduce the demand for fentanyl in a preclinical model of fentanyl self-administration. METHODS: Male and female Sprague-Dawley rats (n = 25-29) were implanted with indwelling jugular catheters and allowed to self-administer fentanyl (3.2µg/kg/infusion). Rats progressed to a novel low price twice within-session threshold procedure where rats sampled the lowest price twice before decreasing the dose of fentanyl by a » log every 10minutes across 11 doses. Once stable, rats were pretreated with saline or DOI (0.01, 0.03, 1mg/kg). Fentanyl consumption was analyzed using an exponentiated demand function to extract the dependent variables, Q0 and α. RESULTS: Male and female rats acquired fentanyl self-administration in the lowest price twice within-session threshold procedure. DOI dose-dependently altered fentanyl intake such that 5-HT2AR activation decreased Q0 in female rats but increased Q0 in male rats. For demand elasticity, DOI increased α in male rats but did not alter α in female rats. DOI did not alter inactive lever presses or latency. CONCLUSION: DOI reduces consumption at minimally constrained costs but did not affect the reinforcement value of fentanyl in female rats. Alternatively, DOI significantly reduced the reinforcement value of fentanyl in male rats. Biological sex alters the therapeutic efficacy of DOI and 5-HT2AR activation sex-dependently alters opioid reinforcement.


Subject(s)
Amphetamines , Fentanyl , Rats, Sprague-Dawley , Self Administration , Animals , Male , Female , Fentanyl/pharmacology , Rats , Amphetamines/pharmacology , Sex Characteristics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Dose-Response Relationship, Drug , Analgesics, Opioid/pharmacology , Hallucinogens/pharmacology
15.
Adv Exp Med Biol ; 1456: 49-66, 2024.
Article in English | MEDLINE | ID: mdl-39261423

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, associated with substantial burden and large economical costs. Notwithstanding various conventional antidepressant treatment options, a large portion of depressed people (ca. 30%) fails to respond to first-line treatment, resulting in treatment-resistant depression (TRD). Although non-response to multiple antidepressant interventions is a common outcome, a consensus definition of TRD is not yet available. In practice, TRD is applied when two or more successive treatments with different antidepressants are not working. The last decade's intense research into new medicines for TRD has led to two developments, using typical or serotonergic (psilocybin, ayahuasca) and atypical (glutamatergic) psychedelics (ketamine, esketamine). Both approaches, although via different entrance mechanism, exhibit a fast onset but also long-lasting antidepressant effect far beyond the biological presence of the drug in the body, strongly indicating that downstream mechanisms activated by signaling cascades in the brain are involved. The present chapter describes the clinical development of psilocybin and esketamine for TRD and discusses the problems involved in the use of a proper placebo because of the psychotomimetic (psilocybin) or dissociative (ketamine) effects that interfere with performing "blind" studies. Nevertheless, intranasal esketamine was developed and approved for TRD, whereas psilocybin has shown positive results. Adverse effects and tolerability of both drugs in the dose ranges used are generally acceptable. The emergence of anti-TRD medicines for treatment of a very severe disease is a breakthrough in psychiatry.


Subject(s)
Antidepressive Agents , Depressive Disorder, Treatment-Resistant , Hallucinogens , Ketamine , Psilocybin , Humans , Depressive Disorder, Treatment-Resistant/drug therapy , Hallucinogens/therapeutic use , Hallucinogens/adverse effects , Hallucinogens/pharmacology , Ketamine/therapeutic use , Ketamine/adverse effects , Psilocybin/therapeutic use , Psilocybin/adverse effects , Psilocybin/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Treatment Outcome
16.
Int J Biol Sci ; 20(11): 4476-4495, 2024.
Article in English | MEDLINE | ID: mdl-39247815

ABSTRACT

Chronic stress is closely associated with gastrointestinal disorders. However, the impact of stress-related neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) on the intestines under chronic stress conditions remains poorly understood. This study aims to elucidate the mechanisms by which 5-HT affects mitochondrial biogenesis and intestinal barrier integrity during chronic stress. Employing a chronic restraint stress (CRS) mouse model, we observed elevated intestinal 5-HT levels, altered colonic mucosal structure, and disrupted tight junctions. The increase in 5-HT was associated with up-regulated serotonin synthesis enzymes and downregulated serotonin reuptake transporters, indicating an imbalance in serotonin homeostasis imbalance caused by chronic stress. Furthermore, serotonin exacerbated oxidative stress and impaired tight junction protein expression, highlighting its role in promoting intestinal barrier dysfunction. Experiments with cells in vitro demonstrated that 5-HT impairs mitochondrial biogenesis by inhibiting the AMPK-PGC-1α axis via 5-HT7 receptors and the cAMP-PKA pathway. Pharmacological inhibition of serotonin synthesis or 5-HT7 receptors alleviated the intestinal barrier damage caused by 5-HT and chronic stress, restoring mitochondrial biogenesis. These findings provide compelling evidence that serotonin exacerbates chronic stress-induced intestinal barrier disruption by inhibiting the AMPK-PGC-1α axis, paving the way for novel therapeutic interventions targeting the detrimental effects of serotonin on the intestine, particularly under chronic stress conditions.


Subject(s)
Mitochondria , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Serotonin , Serotonin/metabolism , Animals , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Mice, Inbred C57BL
17.
Article in English | MEDLINE | ID: mdl-39251080

ABSTRACT

Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.

18.
Br J Pharmacol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232850

ABSTRACT

BACKGROUND AND PURPOSE: Elevated levels of 5-HT have been correlated with coronary artery disease and cardiac events, suggesting 5-HT is a potential novel factor in the development of atherosclerotic cardiovascular disease. However, the underlying pathological mechanisms of the 5-HT system in atherosclerosis remain unclear. The 5-HT2B receptor (5-HT2BR), which establishes a positive feedback loop with 5-HT, has been identified as a contributor to pathophysiological processes in various vascular disorders. In this study, we investigated the immunological impact of 5-HT2BR in atherosclerosis-prone apolipoprotein E-deficient (ApoE-/-) mice. EXPERIMENTAL APPROACH: Plasma levels of 5-HT were measured in mice using an ELISA kit. Atherosclerotic plaque formation, macrophage infiltration and inflammatory signalling were assessed in ApoE-/- mice by employing both pharmacological inhibition and genetic deficiency of 5-HT2BR. Inflammasome activation was elucidated using peritoneal macrophages isolated from 5-HT2BR-deficient mice. KEY RESULTS: An upregulation of 5-HT2BR expression was observed in the aortas of ApoE-/- mice, exhibiting a strong correlation with the presence of macrophages in plaques. Atherosclerosis was attenuated in mice through pharmacological inhibition and genetic deficiency of 5-HT2BR. Additionally, a significant reduction in atherosclerotic plaque size was achieved through bone marrow reconstitution with 5-HT2BR-deficient cells. 5-HT2BR-deficient macrophages showed attenuated interferon (IFN) signalling, NLRP3 inflammasome activation, and interleukin-1ß release. Moreover, macrophages primed with 5-HT2BR deficiency displayed an anti-inflammatory phenotype. CONCLUSION AND IMPLICATIONS: These findings support the hypothesis that 5-HT2BR in macrophages plays a causal role in the development of atherosclerosis, revealing a novel perspective for potential therapeutic strategies in atherosclerosis-related diseases.

19.
Mol Neurobiol ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285025

ABSTRACT

Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.

20.
Front Pharmacol ; 15: 1428485, 2024.
Article in English | MEDLINE | ID: mdl-39309007

ABSTRACT

Introduction: Major depressive disorder (MDD) is a common and disabling mental health condition; the currently available treatments for MDD are insufficient to meet clinical needs due to their limited efficacy and slow onset of action. Hypidone hydrochloride (YL-0919) is a sigma-1 receptor agonist and a novel fast-acting antidepressant that is currently under clinical development. Methods: To further understand the fast-acting antidepressant activity of YL-0919, this study focused on the role of 5-HTergic neurons in the dorsal raphe nucleus (DRN) in mice. Using fiber photometry to assess neural activity in vivo and two behavioral assays (tail suspension test and forced swimming test) to evaluate antidepressant-like activity. Results: It was found that 3 or 7 days of YL-0919 treatment significantly activated serotonin (5-HT) neurons in the DRN and had significant antidepressant-like effects on mouse behaviors. Chemogenetic inhibition of 5-HTergic neurons in the DRN significantly blocked the antidepressant-like effect of YL-0919. In addition, YL-0919 treatment significantly increased the 5-HT levels in the prefrontal cortex (PFC). These changes were drastically different from those of the selective serotonin reuptake inhibitor (SSRI) fluoxetine, which suggested that the antidepressant-like effects of the two compounds were mechanistically different. Conclusion: Together, these results reveal a novel role of 5-HTergic neurons in the DRN in mediating the fast-acting antidepressant-like effects of YL-0919, revealing that these neurons are potential novel targets for the development of fast-acting antidepressants for the clinical management of MDD.

SELECTION OF CITATIONS
SEARCH DETAIL