Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 479
Filter
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003056

ABSTRACT

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Subject(s)
Arsenic , Environmental Exposure , Oxidative Stress , Adult , Female , Humans , Male , Middle Aged , 8-Hydroxy-2'-Deoxyguanosine , Arsenic/toxicity , Biomarkers/urine , China , Cross-Sectional Studies , DNA Damage , East Asian People , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Longitudinal Studies , Oxidative Stress/drug effects
2.
Environ Toxicol Pharmacol ; 110: 104526, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111560

ABSTRACT

The current study aimed to explore the genotoxic impacts of the insecticide acetamiprid (ACP) on the myocardium and assess the ameliorative role of resveratrol (RSV). Male rats (10/group) were treated via oral route for 90 days: control; ACP (25 mg/kg); RSV (20 mg/kg); ACP+RSV. Peripheral blood micronucleus test, oxidative stress analysis, comet assay, 8-hydroxydeoxyguanosine and gene expression assessment were performed. The findings revealed that ACP has myocardial genotoxic effects, as demonstrated by increased micronucleus and 8-hydroxydeoxyguanosine formation and increased all comet parameters. Oxidative stress analysis demonstrated that ACP elevated H2O2 and NO levels while decreasing catalase and GST activities. Acetamiprid dysregulated the expression of genes related to oxidative stress and DNA damage response. However, RSV co-treatment resulted in significant protection against these genotoxic impacts. Resveratrol reduced DNA damage and restored the oxidative balance in the myocardium. Moreover, RSV modulated the Nrf2/HO-1 and Atm/P53 pathways, potentiating antioxidant defense and DNA repair.

3.
Toxicol Mech Methods ; : 1-11, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138671

ABSTRACT

OBJECTIVES: This study, aimed to determine and compare DNA damage in e-cigarette and HTP (IQOS) users by assessing DNA-adducts, which are biomarkers of various DNA alkylation and oxidation. METHODS: For the evaluation of DNA alkylation, N3-Ethyladenine (N3-EtA) and N3-Methyladenine (N3-MeA) adducts were used. DNA oxidation was assessed using, 8-hydroxy-2'-deoxyguanosine(8-OHdG). The urinary cotinine, N3-MeA, N3-EtA, and 8-OHdG concentrations of the cigarette smokers (n:39), e-cigarette users (n:28), IQOS users (n:20), passive smokers (n:32), and nonsmokers(n:41) who lived Ankara, Turkiye were determined using, liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: In light of the detected 8-OHdG levels, e-cigarette (3.19 ng/g creatinine) and IQOS (4.38 ng/g creatinine) users had higher oxidative DNA damage than healthy nonsmokers (2.51 ng/g creatinine). Alkylated DNA-adducts were identified in the urine of e-cigarette (N3-MeA: 3.92 ng/g creatinine; N3-EtA: 0.23 ng/g creatinine) and IQOS (N3-MeA: 7.54 ng/g creatinine; N3-EtA: 0.29 ng/g creatinine) users. In the generation of N3-MeA adducts, a significant difference was found between IQOS users and e-cigarette users (p < 0.05). Also, DNA alkylation in flavored e-cigarette users (N3-MeA: 4.51 ng/g creatinine; N3-EtA: 0.27 ng/g creatinine) was higher than in non-flavored e-cigarette users (N3-MeA: 2.27 ng/g creatinine; N3-EtA: 0.06 ng/g creatinine). The highest cotinine levels were found in cigarette smokers (16.1316 ng/g creatinine). No significant difference was found when e-cigarette (1163.02 ng/g creatinine) and IQOS smokers were compared (1088.3 ng/g creatinine). CONCLUSION: People who use e-cigarettes and IQOS may be at higher risk of genotoxicity than those who do not use and are not exposed to any tobacco products. Furthermore, the usage of flavoring additives in e-cigarettes contributed to additional genotoxic damage risks.

4.
Technol Health Care ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39093099

ABSTRACT

BACKGROUND: Oral cancer has a high worldwide incidence and mortality rate showing an upward trend year by year, predominantly occurring in emerging countries. Oral squamous cell carcinoma (OSCC) is one of the main types of oral cancer, accounting for more than 90% of all cases in oral cancer. OBJECTIVE: To evaluate the diagnostic value of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-Prostaglandin F2alpha (8-iso-PGF2α) and tumor necrosis factor (TNF)-α as biomarkers in the early carcinogenesis of erosive oral lichen planus (EOLP) by measuring their levels in the blood of patients with EOLP and oral squamous cell carcinoma (OSCC). METHODS: A total of 69 patients were enrolled in this case-control study [including an OSCC group (n= 23), an EOLP group (n= 23), and an age- and gender-matched healthy control group (n= 23)]. Blood levels of 8-OHdG, 8-iso-PGF2α and TNF-α were measured using enzyme-linked immunosorbent assay (ELISA). Statistical differences in these indicators among the three groups were analyzed. RESULTS: Plasma levels of 8-OHdG and 8-iso-PGF2α in the OSCC group were significantly higher than those in both the EOLP group and the control group (all P< 0.05); no significant statistical difference was found between the EOLP group and the control group. Serum levels of TNF-α in both the OSCC and EOLP groups were elevated compared with the control group, showing significant differences among all three groups (all P< 0.05). Receiver operating characteristic (ROC) curves revealed that plasma 8-OHdG and 8-iso-PGF2α levels and serum TNF-α levels had diagnostic effects on early carcinogenesis in EOLP patients. When these indicators were combined for diagnosis, the diagnostic effect was enhanced, with an area under the ROC curve (AUC) values of 0.819. CONCLUSION: 8-OHdG, 8-iso-PGF2α and TNF-α may serve as biological indicators for monitoring the early carcinogenesis of EOLP, and the diagnostic effect was augmented when these indicators were combined.

5.
Ecotoxicol Environ Saf ; 284: 116872, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146595

ABSTRACT

Recycling electronic waste (e-waste) poses risks of metal exposure, potentially leading to health impairments. However, no previous study has focused on this issue in Hong Kong. Therefore, from June 2021 to September 2022, this study collected urine samples from 101 e-waste workers and 100 office workers in Hong Kong to compare their urinary levels of metals using ICP-MS. Among the 15 included metals (with detection rates above the 70 % threshold), eight showed significantly higher urinary concentrations (unit: µg/g creatinine) in e-waste workers compared to office workers: Li (25.09 vs. 33.36), Mn (1.78 vs. 4.15), Ni (2.10 vs. 2.77), Cu (5.81 vs. 9.23), Zn (404.35 vs. 431.52), Sr (151.33 vs. 186.26), Tl (0.35 vs. 0.43), and Pb (0.69 vs. 1.16). E-waste workers in Hong Kong generally exhibited lower metal levels than those in developing regions but higher than their counterparts in developed areas. The urine level of 8-hydroxy-2-deoxyguanosine (8-OHdG) was determined by HPLC-MS/MS, and no significant difference was found between the two groups. Multiple linear regression models revealed no significant association between individual metal and urinary 8-OHdG concentrations. However, the metal mixture was identified to marginally elevate the 8-OHdG concentrations (1.12, 95 %CI: 0.04, 2.19) by quantile g­computation models, with Mn and Cd playing significant roles in such effect. In conclusion, while the metal levels among Hong Kong e-waste workers compared favorably with their counterparts in other regions, their levels were higher than those of local office workers. This underscores the need for policymakers to prioritize attention to this unique industry.

6.
Biotechnol Rep (Amst) ; 42: e00833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948353

ABSTRACT

Despite powerful DNA repair systems, oxidative damage/modification to DNA is an inevitable side effect of metabolism, ionizing radiation, lifestyle habits, inflammatory pathologies such as type-2 diabetes or metabolic syndrome, cancer and natural aging. One of the most common oxidative DNA modifications is 8-OHdG (8­hydroxy-2'-deoxyguanosine), which is the most widely used marker in research and clinical diagnostics. 8-OHdG is easily and specifically detectable in various samples such as urine, plasma, cells and tissues via a large variety of methods like ELISA, HPLC, chromatographic methods, and immunochemistry. Formed by oxidation of guanine and being representative for the degree of DNA damage, 8-OHdG can be also used as biomarker for risk assessment of various cancers as well as degenerative diseases. Here, we present a highly specific, self-developed 8-OHdG antibody in successful comparison to a commercially one, tested in cells (FF95, HCT116, and HT22) and intestinal tissue, focusing on automatized evaluation via fluorescence/confocal microscopy.

7.
Toxicol Res (Camb) ; 13(3): tfae083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939725

ABSTRACT

Background: Aflatoxin B1 (AFB1) food contamination is a global health hazard that has detrimental effects on both human and animal health. The objective of the current study is to assess the protective impact of carnosic acid against AFB1-induced toxicities in the liver, kidneys, and heart. Methods: Forty male Wistar Albino rats (weighting 180 ~ 200 g) were allocated into 5 groups (8 rats each); the 1st group received saline as served as a control, the 2nd group received carnosic acid (CA100) at a dose of 100 mg/kg bw/day by gavage for 14 days, the 3rd group received AFB1 at a dose of 2.5 mg/kg bw, orally twice on days 12 and 14, the 4th group (AFB1-CA50) received AFB1 as in the 3rd group and CA at a dose of 50 mg/kg bw/day, and the 5th group (AFB1-CA100) received AFB1 as in the 3rd group and CA as in the 2nd group. Results: CA significantly decreased the liver enzymes (ALT, AST. ALP), renal function products (LDH, BUN, creatinine), and cardiac enzymes (CK and CK-MB) to control levels after the high increment by AFB1 exposure. Moreover, CA significantly decreased the oxidative stress (MDA, NO, 8-OHdG) and increased the antioxidant enzyme activities (CAT, GSH, GSH-Px, and SOD) after severe disruption of oxidant/antioxidant balance by AFB1 exposure. Interestingly, CA significantly decreased the proinflammatory mediators (IL-6, IL-1ß, and TNF-α) to the control levels after severe inflammation induced by AFB1 exposure. Conclusions: Conclusively, CA had antioxidant, anti-inflammatory, and anti-DNA damage effects against hepatic, renal, and cardiac AFB1-induced toxicities.

8.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891771

ABSTRACT

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Subject(s)
DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Ultraviolet Rays , Vitamin D , Humans , Ultraviolet Rays/adverse effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Vitamin D/pharmacology , Vitamin D/metabolism , Vitamin D/analogs & derivatives , DNA Damage/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/drug effects , Calcitriol/pharmacology , Calcitriol/metabolism , DNA Repair/drug effects , Phosphorylation/drug effects
9.
Article in English | MEDLINE | ID: mdl-38821676

ABSTRACT

N-Nitrosamines, known as drug impurities and suspected carcinogens, have drawn significant public concern. In response to drug regulatory needs, the European Medicines Agency (EMA) has previously proposed a carcinogenic potency categorization approach based on the N-nitrosamine α-hydroxylation hypothesis, i.e., that N-nitrosamine mutagenicity increases with the number of α-hydrogen atoms. However, this structure-activity relationship has not been fully tested in vivo. NEIPA (N-nitrosoethylisopropylamine) and NDIPA (N-nitrosodiisopropylamine) are small N-Nitrosamines with similar structures, differing in that the former compound has an additional α-hydrogen atom. In this study, NEIPA and NEIPA doses, 25-100 mg/kg, were administered orally to C57BL/6 J mice for seven consecutive days, and their mutation and DNA damage effects were compared. Compared with NDIPA, the mutagenicity and DNA damage potencies of NEIPA (which contains one more α-hydrogen) were much greater. These differences may be related to their distinct metabolic pathways and target organs. This case study confirms the role of α-hydroxyl modification in the mutagenicity of nitrosamines, with oxidation at the α-hydrogen being a crucial step in the formation of mutagens from N-Nitrosamines, and can inform mutagenicity risk assessment and the formulation of regulatory standards for N-nitrosamine impurities.


Subject(s)
DNA Damage , Mice, Inbred C57BL , Mutagenicity Tests , Mutagens , Nitrosamines , Animals , Mice , Nitrosamines/toxicity , Nitrosamines/chemistry , Mutagenicity Tests/methods , DNA Damage/drug effects , Mutagens/toxicity , Male , Structure-Activity Relationship , Carcinogens/toxicity , Diethylnitrosamine/toxicity , Diethylnitrosamine/analogs & derivatives , Mutation/drug effects , Administration, Oral
10.
Ecotoxicol Environ Saf ; 278: 116410, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696871

ABSTRACT

Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.


Subject(s)
Glycine , Glyphosate , Herbicides , Infertility, Male , Oxidative Stress , Spermatozoa , Humans , Male , Glycine/analogs & derivatives , Glycine/toxicity , Oxidative Stress/drug effects , France , Adult , Herbicides/toxicity , Spermatozoa/drug effects , Infertility, Male/chemically induced , Semen/drug effects , Biomarkers/blood , Malondialdehyde/metabolism , Organophosphonates/toxicity , Middle Aged
11.
J Oral Maxillofac Pathol ; 28(1): 37-41, 2024.
Article in English | MEDLINE | ID: mdl-38800434

ABSTRACT

Background: Gutka chewing is the most common deleterious oral habit prevalent in the geographical distribution of the Indian subcontinent. Gutka leads to the production of numerous free radicals, which causes oxidative stress in regional oral tissues. Oxidative stress brings about the oxidation of guanine bases of DNA that generates 8-OHdG as its main byproduct. The presence of 8-OHdG can be evaluated not only in tissue but also in saliva, blood and urine. The availability of 8-OHdG in these samples is quite documented. In addition, a comparative assay of 8-ohdg DNA damage marker in multiple samples is yet to be done. Material and Methodology: A sample size of 60 was divided into two groups, i.e., gutka consumers without any lesion and gutka consumers with OSMF. Ten samples each of saliva, serum and urine were collected from these two groups and healthy controls. Samples were centrifuged at 1000 RPM at 2-8°C for 15-20 minutes. A volume of 1.5 ml resultant supernatant was pipetted out in labelled Eppendorf tubes and stored at -80°C. The ELISA test was performed to measure the concentration of 8-OHdG protein in different samples at 450 nm after adding stop solution in 96-well microplate. Results: 8-OHdG concentration was found to be highest in saliva followed by urine and serum. 8-OHdG concentration in serum was significantly less than that in saliva and urine (P-value <0.05). Intergroup difference in concentration of 8-OHdG of urine, saliva and serum was significant (P-value <0.05). Post hoc analysis revealed that concentration of 8-OHdG in saliva and urine was non-significantly different (P-value >0.05). Conclusion: Saliva appears to be the most appropriate sample type as compared to serum and urine for the evaluation of 8-OHdG in OSMF subjects.

12.
Chemosphere ; 360: 142363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768789

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals linked to adverse pregnancy outcomes. Although their underlying biological mechanisms are not fully understood, evidence suggests PFAS may disrupt endocrine functions and contribute to oxidative stress (OS) and inflammation. OBJECTIVE: We examined associations between early pregnancy PFAS exposure and OS biomarkers, exploring potential effect modifications by fetal sex and maternal race. METHODS: We used data from 469 LIFECODES participants with measured plasma PFAS (median 10 weeks gestation) and repeated measures (median 10, 18, 26, and 35 weeks gestation) of urinary OS biomarkers [8-iso-prostaglandin-F2α (8-isoprostane) and 8-hydroxydeoxyguanosine (8-OHdG)]. Protein damage biomarkers (chlorotyrosine, dityrosine, and nitrotyrosine) were additionally measured in plasma from a subset (N = 167) during the third visit. Associations between each PFAS and OS biomarkers were examined using linear mixed-effects models and multivariable linear regressions, adjusting for potential confounders, including maternal age, race, education level, pre-pregnancy BMI, insurance status, and parity. Effect modifications were evaluated by including an interaction term between each PFAS and fetal sex or maternal race in the models. RESULTS: We observed significant positive associations between PFOS and 8-isoprostane, with a 9.68% increase in 8-isoprostane levels (95% CI: 0.10%, 20.18%) per interquartile range increase in PFOS. In contrast, PFUA was negatively associated [9.32% (95% CI: -17.68%, -0.11%)], while there were suggestive positive associations for MPAH and PFOA with 8-isoprostane. The associations of several PFAS with 8-OHdG varied by fetal sex, showing generally positive trends in women who delivered females, but negative or null in those who delivered males. No significant effect modification by maternal race was observed. CONCLUSIONS: This study provides evidence linking PFAS exposure to OS during pregnancy, with potential sex-specific effects of certain PFAS on 8-OHdG. Further research should explore additional OS/inflammatory biomarkers and assess the modifying effects of dietary and behavioral patterns across diverse populations.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Dinoprost , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Oxidative Stress , Humans , Female , Fluorocarbons/blood , Oxidative Stress/drug effects , Pregnancy , Adult , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Biomarkers/blood , Environmental Pollutants/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , Male , Young Adult , Alkanesulfonic Acids/blood
13.
Fish Shellfish Immunol ; 149: 109529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561069

ABSTRACT

This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 µg/ml, 1 µg/ml and 2.5 µg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.


Subject(s)
Brain , NF-kappa B , Okadaic Acid , Signal Transduction , Toll-Like Receptor 4 , Zebrafish , Animals , Zebrafish/immunology , Brain/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Okadaic Acid/toxicity , NF-kappa B/metabolism , NF-kappa B/immunology , 8-Hydroxy-2'-Deoxyguanosine , Caspase 3/metabolism , Caspase 3/genetics , Larva/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism
14.
Clin Oral Investig ; 28(5): 270, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658396

ABSTRACT

OBJECTIVES: 8-Hydroxideoxyguanosine (8-OHdG) is a marker of oxidative stress, and Forkhead Box-O1 (FOXO1) is a transcription factor and signaling integrator in cell and tissue homeostasis. This study aims to determine FOXO1 and 8-OHdG levels in serum and saliva samples of periodontitis patients and to evaluate their relationship with clinical periodontal parameters. MATERIALS AND METHODS: Twenty healthy individuals, twenty generalized Stage III Grade B periodontitis patients, and nineteen generalized Stage III Grade C periodontitis patients were included in the study. Clinical periodontal parameters (plaque index (PI), probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL)) were recorded. Salivary and serum 8-OHdG and FOX-O1 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Clinical periodontal parameters showed a statistically significant increase in periodontitis groups compared to the control group (p < 0.05). 8-OHdG salivary levels were significantly higher in both periodontitis groups compared to the control group. The salivary FOXO1 levels were significantly lower in both periodontitis groups compared to the control group. Salivary FOXO1 level had a low-grade negative correlation with BOP and salivary 8-OHdG level. CONCLUSIONS: While reactive oxygen species increase in periodontal inflammation, low expression of FOXO1, an important transcription factor for antioxidant enzymes, supports that this molecule plays a vital role in tissue destruction, and FOXO1 can be seen as a potential immune modulator. CLINICAL RELEVANCE: The role of FOXO1 in supporting antioxidant defense may suggest that FOXO1 is a candidate target for periodontitis treatment.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Enzyme-Linked Immunosorbent Assay , Forkhead Box Protein O1 , Oxidative Stress , Periodontal Index , Periodontitis , Saliva , Humans , Forkhead Box Protein O1/metabolism , Male , Saliva/metabolism , Saliva/chemistry , Female , Adult , Periodontitis/metabolism , Dental Plaque Index , Middle Aged , Case-Control Studies
15.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474158

ABSTRACT

This study aims to analyze post-mortem human cardiac specimens, to verify and evaluate the existence or extent of oxidative stress in subjects whose cause of death has been traced to sepsis, through immunohistological oxidative/nitrosative stress markers. Indeed, in the present study, i-NOS, NOX2, and nitrotyrosine markers were higher expressed in the septic death group when compared to the control group, associated with also a significant increase in 8-OHdG, highlighting the pivotal role of oxidative stress in septic etiopathogenesis. In particular, 70% of cardiomyocyte nuclei from septic death specimens showed positivity for 8-OHdG. Furthermore, intense and massive NOX2-positive myocyte immunoreaction was noticed in the septic group, as nitrotyrosine immunostaining intense reaction was found in the cardiac cells. These results demonstrated a correlation between oxidative and nitrosative stress imbalance and the pathophysiology of cardiac dysfunction documented in cases of sepsis. Therefore, subsequent studies will focus on the expression of oxidative stress markers in other organs and tissues, as well as on the involvement of the intracellular pattern of apoptosis, to better clarify the complex pathogenesis of multi-organ failure, leading to support the rationale for including therapies targeting redox abnormalities in the management of septic patients.


Subject(s)
Heart Diseases , Sepsis , Humans , Oxidative Stress/physiology , Sepsis/metabolism , Myocytes, Cardiac/metabolism , Heart Diseases/metabolism , Nitrosative Stress
16.
Sci Rep ; 14(1): 3221, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332317

ABSTRACT

Excess oxidative stress generated in the body causes various types of cellular damage, including DNA damage. Certain trace minerals act as antioxidants by functioning as cofactors for antioxidant enzymes. This study was conducted to evaluate the serum and hair concentrations of major antioxidant trace minerals (zinc, manganese, selenium, and chromium) and to determine the association between the oxidative stress marker urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and serum or hair antioxidant trace mineral concentrations, according to the general characteristics of healthy adults. Study participants were selected after screening, and 108 participants aged 19-69 years were finally included. Serum and hair trace mineral concentrations were analyzed using inductively coupled plasma mass spectrometry, and urine 8-OHdG levels were quantified using an ELISA kit. Results showed that urinary 8-OHdG levels were significantly higher in exercisers than in those who did not exercise. Correlation analysis revealed that urinary 8-OHdG was negatively correlated with hair zinc in participants over 60 years of age and with poor health status, and positively correlated with hair chromium in participants with irregular dietary habits. In conclusion, these results suggest that urinary 8-OHdG is particularly correlated with hair zinc and chromium levels. Additional large-scale epidemiological studies are needed to generally confirm these findings.


Subject(s)
Selenium , Trace Elements , Adult , Humans , Middle Aged , Aged , Antioxidants/metabolism , Trace Elements/analysis , Cross-Sectional Studies , Oxidative Stress , Selenium/metabolism , Zinc/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Chromium/metabolism , Hair/chemistry , Deoxyguanosine/metabolism
17.
Alzheimers Dement (N Y) ; 10(1): e12440, 2024.
Article in English | MEDLINE | ID: mdl-38356471

ABSTRACT

INTRODUCTION: While Alzheimer's disease (AD) is defined by amyloid-ß plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS: We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION: Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-ß and tau will be crucial for optimizing personalized treatment strategies. Highlights: A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.

18.
Diabetol Metab Syndr ; 16(1): 46, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365853

ABSTRACT

AIMS: To estimate the effects of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) on proteinuria and oxidative stress expression in type 2 diabetes patients. MATERIALS AND METHODS: 68 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according urinary albumin-to-creatinine ratio (UACR), including T2DM with non-albuminuria group (UACR < 30 mg/g), T2DM with microalbuminuria group (30 ≤ UACR ≤ 300 mg/g), T2DM with macroalbuminuria group (UACR>300 mg/g). They all received SGLT2 inhibitors (SGLT2i) treatment for 12 weeks. The expression of advanced glycation end products (AGEs) in plasma and 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine were measured as indications of oxidative stress. The 24-hour urine samples were collected to measure the concentration of proteinuria and 8-OHdG before and after 12 weeks SGLT2i treatment. Plasma renin activity (PRA), angiotensin II (Ang II) and Aldosterone (ALD) were measured to evaluate renin angiotensin aldosterone system (RASS) levels. RESULTS: After 12 weeks SGLT2 inhibitors treatment, the median values of 24-hour proteinuria decreased in macroalbuminuria compared to baseline (970 vs. 821 mg/d, P = 0.006). The median values of AGEs and 8-OHdG decreased in microalbuminuria and macroalbuminuria groups when compared to baseline, AGEs (777 vs. 136 ug/ml, P = 0.003) and (755 vs. 210 ug/ml, P = 0.001), 8-OHdG (8.00 vs. 1.88 ng/ml, P = 0.001) and (11.18 vs. 1.90 ng/ml, P < 0.001), respectively. Partial correlations showed that 8-OHdG were relevant to the baseline 24-h proteinuria (r = 0.389, p = 0.001), the reduction of OHdG (Δ8-OHdG) were positively correlated with the decrease of 24-h proteinuria (Δ24-h proteinuria) after 12 weeks of SGLT2i treatment (r = 0.283, P = 0.031). There was no significant correlation between 24-h proteinuria and AGEs in baseline (r = -0.059, p = 0.640) as well as between ΔAGEs and Δ24-h proteinuria (r = 0.022, p = 0.872) after12 weeks of SGLT2i treatment in T2DM patients. CONCLUSIONS: SGLT2i may reduce proteinuria in diabetic nephropathy patients, potentially by inhibiting renal oxidative stress, but not through the AGEs pathway and does not induce RAAS activation. TRIAL REGISTRATION: This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.

19.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38397754

ABSTRACT

Lung cancer (LC) constitutes an important cause of death among patients with Chronic Obstructive Pulmonary Disease (COPD). Both diseases may share pathobiological mechanisms related to oxidative damage and cellular senescence. In this study, the potential value of leucocyte telomere length, a hallmark of aging, and 8-OHdG concentrations, indicative of oxidative DNA damage, as risk biomarkers of LC was evaluated in COPD patients three years prior to LC diagnosis. Relative telomere length measured using qPCR and serum levels of 8-OHdG were determined at the baseline in 99 COPD smokers (33 with LC and 66 age-matched COPD without LC as controls). Of these, 21 COPD with LC and 42 controls had the biomarkers measured 3 years before. Single nucleotide variants (SNVs) in TERT, RTEL, and NAF1 genes were also determined. COPD cases were evaluated, which showed greater telomere length (p < 0.001) and increased serum 8-OHdG levels (p = 0.004) three years prior to LC diagnosis compared to the controls. This relationship was confirmed at the time of LC diagnosis. No significant association was found between the studied SNVs in cases vs. controls. In conclusion, this preliminary study shows that longer leucocyte telomere length and increased 8-OHdG serum levels can be useful as early biomarkers of the risk for future lung cancer development among COPD patients.

20.
Cureus ; 16(1): e52860, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38406004

ABSTRACT

Background In patients with rheumatoid arthritis, oxidative DNA damage is increased by deficient zinc levels as well as increasing disease activity. However, the relationship between zinc levels, disease activity, and oxidative DNA damage remains unclear. In this study, we investigated serum zinc levels and disease activity and their association with 8-hydroxy-2-deoxyguanosine (8-OHdG). Methodology This case-control study was conducted among rheumatoid arthritis patients (n = 264) and healthy individuals (n = 192). Oxidative DNA damage was assessed by measuring serum 8-OHdG using enzyme-linked immunosorbent assay. Colorimetry was used to measure serum zinc levels. Disease activity was assessed using the Disease Activity Score-28 (DAS-28) score. Results Significantly higher 8-OHdG levels (p < 0.00) were found in the test group compared to the control group. Moreover, significantly lower serum zinc levels (p < 0.001) were noted in patients with rheumatoid arthritis compared to the control group. In addition, higher 8-OHdG levels were found in patients with low serum zinc levels compared to those with normal mean serum zinc levels. Lower levels of DNA oxidative damage were found in patients with moderate and low disease activity compared to those with high disease activity. A significant negative correlation was noted between serum zinc levels and DAS-28 scores and oxidative DNA damage marker (r = - 0.30, p = 0.038 and r = - 0.26, p = 0.043, respectively), while a significant positive correlation was observed between body mass index and 8-OHdG (r = 0.22, p = 0.02) in healthy individuals. Conclusions High serum 8-OHdG levels and high disease activity with low mean serum zinc levels may indicate a high degree of oxidative DNA damage in patients with rheumatoid arthritis.

SELECTION OF CITATIONS
SEARCH DETAIL