Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 32(3): 101273, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39022744

ABSTRACT

Adeno-associated virus (AAV) vectors are promising gene therapy candidates, but pre-existing anti-AAV neutralizing antibodies (NAbs) pose a significant challenge to successful gene delivery. Knowledge of NAb seroprevalence remains limited and inconsistent. We measured activity of NAbs against six clinically relevant AAV serotypes across 10 countries in adults (n = 502) and children (n = 50) using a highly sensitive transduction inhibition assay. NAb prevalence was generally highest for AAV1 and lowest for AAV5. There was considerable variability across countries and geographical regions. NAb prevalence increased with age and was higher in females, participants of Asian ethnicity, and participants in cancer trials. Co-prevalence was most frequently observed between AAV1 and AAV6 and less frequently between AAV5 and other AAVs. Machine learning analyses revealed a unique clustering of AAVs that differed from previous phylogenetic classifications. These results offer insights into the biological relationships between the immunogenicity of AAVs in humans beyond that observed previously using standard clades, which are based on linear capsid sequences. Our findings may inform improved vector design and facilitate the development of AAV vector-mediated clinical gene therapies.

2.
Pediatr Neurol ; 153: 11-18, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38306745

ABSTRACT

BACKGROUND: Delandistrogene moxeparvovec is a gene transfer therapy approved in the United States, United Arab Emirates, and Qatar for the treatment of ambulatory patients aged four through five years with a confirmed Duchenne muscular dystrophy (DMD)-causing mutation in the DMD gene. This therapy was developed to address the underlying cause of DMD through targeted skeletal, respiratory, and cardiac muscle expression of delandistrogene moxeparvovec micro-dystrophin, an engineered, functional dystrophin protein. METHODS: Drawing on clinical trial experience from Study 101 (NCT03375164), Study 102 (NCT03769116), and ENDEAVOR (Study 103; NCT04626674), we outline practical considerations for delandistrogene moxeparvovec treatment. RESULTS: Before infusion, the following are recommended: (1) screen for anti-adeno-associated virus rhesus isolate serotype 74 total binding antibody titers <1:400; (2) assess liver function, platelet count, and troponin-I; (3) ensure patients are up to date with vaccinations and avoid vaccine coadministration with infusion; (4) administer additional corticosteroids starting one day preinfusion (for patients already on corticosteroids); and (5) postpone dosing patients with any infection or acute liver disease until event resolution. Postinfusion, the following are recommended: (1) monitor liver function weekly (three months postinfusion) and, if indicated, continue until results are unremarkable; (2) monitor troponin-I levels weekly (first month postinfusion, continuing if indicated); (3) obtain platelet counts weekly (two weeks postinfusion), continuing if indicated; and (4) maintain the corticosteroid regimen for at least 60 days postinfusion, unless earlier tapering is indicated. CONCLUSIONS: Although the clinical safety profile of delandistrogene moxeparvovec has been consistent, monitorable, and manageable, these practical considerations may mitigate potential risks in a real-world clinical practice setting.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin/therapeutic use , Troponin I/genetics , Troponin I/metabolism , Adrenal Cortex Hormones/therapeutic use , Genetic Therapy , Muscle, Skeletal
3.
Front Cell Dev Biol ; 11: 1167762, 2023.
Article in English | MEDLINE | ID: mdl-37497476

ABSTRACT

Introduction: Delandistrogene moxeparvovec (SRP-9001) is an investigational gene transfer therapy designed for targeted expression of SRP-9001 dystrophin protein, a shortened dystrophin retaining key functional domains of the wild-type protein. Methods: This Phase 2, double-blind, two-part (48 weeks per part) crossover study (SRP-9001-102 [Study 102]; NCT03769116) evaluated delandistrogene moxeparvovec in patients, aged ≥4 to <8 years with Duchenne muscular dystrophy. Primary endpoints (Part 1) were change from baseline (CFBL) in SRP-9001 dystrophin expression (Week 12), by Western blot, and in North Star Ambulatory Assessment (NSAA) score (Week 48). Safety assessments included treatment-related adverse events (TRAEs). Patients were randomized and stratified by age to placebo (n = 21) or delandistrogene moxeparvovec (n = 20) and crossed over for Part 2. Results: SRP-9001 dystrophin expression was achieved in all patients: mean CFBL to Week 12 was 23.82% and 39.64% normal in Parts 1 and 2, respectively. In Part 1, CFBL to Week 48 in NSAA score (least-squares mean, LSM [standard error]) was +1.7 (0.6) with treatment versus +0.9 (0.6) for placebo; p = 0.37. Disparity in baseline motor function between groups likely confounded these results. In 4- to 5-year-olds with matched baseline motor function, CFBL to Week 48 in NSAA scores was significantly different (+2.5 points; p = 0.0172), but not significantly different in 6-to-7-year-olds with imbalanced baseline motor function (-0.7 points; p = 0.5384). For patients treated with delandistrogene moxeparvovec in Part 2, CFBL to Week 48 in NSAA score was +1.3 (2.7), whereas for those treated in Part 1, NSAA scores were maintained. As all patients in Part 2 were exposed to treatment, results were compared with a propensity-score-weighted external control (EC) cohort. The LSM difference in NSAA score between the Part 2 treated group and EC cohort was statistically significant (+2.0 points; p = 0.0009). The most common TRAEs were vomiting, decreased appetite, and nausea. Most occurred within the first 90 days and all resolved. Discussion: Results indicate robust expression of SRP-9001 dystrophin and overall stabilization in NSAA up to 2 years post-treatment. Differences in NSAA between groups in Part 1 were not significant for the overall population, likely because cohorts were stratified only by age, and other critical prognostic factors were not well matched at baseline.

4.
Ther Adv Neurol Disord ; 16: 17562864221149781, 2023.
Article in English | MEDLINE | ID: mdl-36710722

ABSTRACT

Background: Adeno-associated virus (AAV) vectors are a promising platform for in vivo transfer of transgenes designed to treat diseases. Pre-existing humoral immunity to these vectors can potentially impact the safety and efficacy of gene therapies. Consequently, individuals with pre-existing antibodies to the specific AAV serotypes used may be excluded from clinical trials and treatments. Recombinant AAV serotype rh74 (rAAVrh74), a vector originally isolated from rhesus monkeys and potentially less immunogenic than other serotypes isolated from humans (e.g. AAV2, AAV5, and AAV9), efficiently transduces muscle and is being investigated for use in gene therapy for Duchenne muscular dystrophy (DMD). Objective: To evaluate prevalence of total binding antibodies (neutralizing and non-neutralizing) against rAAVrh74 in patients with DMD. Methods: Eligible individuals (N = 107) were ⩾ 4 to < 18 years old with genetically confirmed DMD and were excluded from the study if they lived with a person who had known exposure to rAAVrh74 or other gene transfer therapy, or if they received prior treatment with gene transfer therapy. A single blood sample was obtained from each participant, and anti-rAAVrh74 total binding antibodies were measured by enzyme-linked immunosorbent assay. Total binding antibody level < 1:400 was defined as not elevated or seronegative. Primary endpoint was the percentage of subjects with elevated total antibody titers to rAAVrh74. Results: A large preponderance (86.1%) of patients with DMD in this data set was seronegative for anti-rAAVrh74 total binding antibodies. These patients would potentially meet the antibody status eligibility criterion for entry into rAAVrh74-based gene therapy clinical trials. Conclusion: Measuring total binding antibodies is a more comprehensive approach to assess pre-existing immune response versus measuring neutralizing antibodies alone. The low seroprevalence of total binding antibodies against rAAVrh74 shown here supports the broad applicability of rAAVrh74-based gene transfer therapy for patients with DMD and potentially other neuromuscular diseases.

5.
Hum Gene Ther ; 34(9-10): 430-438, 2023 05.
Article in English | MEDLINE | ID: mdl-36324212

ABSTRACT

Adeno-associated virus (AAV)-based gene therapies are emerging strategies in Duchenne muscular dystrophy (DMD) treatment. Exposure to wild-type AAV can lead to development of neutralizing antibodies (NAbs) and blocking of AAV transduction, thereby limiting the delivery of AAV vector-based gene therapy. Therefore, it is imperative to check for the presence of AAV NAbs in a patient who is a candidate for gene therapy. We prospectively enrolled 101 genetically confirmed males with DMD (median age 11 years, 48% ambulatory and 59% on steroids) and performed AAV neutralization assays against AAV2, AAV8, AAV9, and AAVrh74 serotypes. The serotype analysis showed that AAV9 (36%) and AAVrh74 (32%) seroprevalence was lower compared with AAV2 (56%) and AAV8 (47%). Interestingly, age was not correlated with NAb titer for any of the capsids. NAb responses were observed at a higher frequency in African American participants and at a lower frequency in Caucasian participants for all four serotypes. Further analysis showed no significant differences in NAb titers regardless of serotype and whether participants were taking steroids or not. Finally, we observed higher AAV8, AAV9, and AAVrh74 seroprevalence and significantly higher AAV2 and AAV8 NAb titers in participants who were ambulatory compared with nonambulatory participants. Overall, these data identify AAV9 and AAVrh74 as the two serotypes with lower pre-existing NAb titers in this study's cohort of 101 males with DMD, possibly showing their utility in future gene therapy applications in treatment of this cohort of patients with DMD.


Subject(s)
Antibodies, Neutralizing , Muscular Dystrophy, Duchenne , Male , Humans , Child , Antibodies, Viral , Dependovirus/genetics , Seroepidemiologic Studies , Genetic Vectors
6.
J Neuromuscul Dis ; 9(1): 179-192, 2022.
Article in English | MEDLINE | ID: mdl-34806613

ABSTRACT

BACKGROUND: GNE myopathy is a unique adult onset rare neuromuscular disease caused by recessive mutations in the GNE gene. The pathophysiological mechanism of this disorder is not well understood and to date, there is no available therapy for this debilitating disease. We have previously established proof of concept that AAV based gene therapy can effectively deliver the wild type human GNE into cultured muscle cells from human patients and in mice, using a CMV promoter driven human wild type GNE plasmid delivered through an adeno associated virus (AAV8) based platform. OBJECTIVE: In the present study we have generated a muscle specific GNE construct, driven by the MCK promoter and packaged with the AAVrh74 serotype for efficacy evaluation in an animal model of GNE Myopathy. METHODS: The viral vector was systemically delivered at 2 doses to two age groups of a Gne-/- hGNED207V Tg mouse described as a preclinical model of GNE Myopathy, and treatment was monitored for long term efficacy. RESULTS: In spite of the fact that the full described characteristics of the preclinical model could not be reproduced, the systemic injection of the rAAVrh74.MCK.GNE viral vector resulted in a long term presence and expression of human wt GNE in the murine muscles and in some improvements of their mild phenotype. The Gne-/- hGNED207V Tg mice are smaller from birth, but cannot be differentiated from littermates by muscle function (grip strength and Rotarod) and their muscle histology is normal, even at advanced age. CONCLUSIONS: The rAAVrh74.MCK.GNE vector is a robust tool for the development of GNE Myopathy therapies that supply the intact GNE. However, there is still no reliable animal model to fully assess its efficacy since the previously developed Gne-/- hGNED207V Tg mice do not present disease characteristics.


Subject(s)
Genetic Therapy/methods , Multienzyme Complexes/genetics , Muscular Diseases/genetics , Muscular Diseases/therapy , Animals , Dependovirus , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Muscular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL