Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Open Med (Wars) ; 18(1): 20230683, 2023.
Article in English | MEDLINE | ID: mdl-37034500

ABSTRACT

Insulin-like-growth factor-1 (IGF-1) is the ligand for insulin-like growth factor-1 receptor (IGF-1R), and the roles of IGF-1/IGF-1R in diabetic nephropathy (DN) are well-characterized previously. However, the biological functions of AG1024 (an IGF-1R inhibitor) in DN remain unknown. This study investigates the roles and related mechanisms of AG-1024 in DN. The experimental DN was established via intraperitoneal injection of streptozotocin, and STZ-induced diabetic rats were treated with AG1024 (20 mg/kg/day) for 8 weeks. The 24 h proteinuria, blood glucose level, serum creatinine, and blood urea nitrogen were measured for biochemical analyses. The increase in 24 h proteinuria, blood glucose level, serum creatinine, and blood urea of DN rats were conspicuously abated by AG1024. After biochemical analyses, the renal tissue specimens were collected, and as revealed by hematoxylin and eosin staining and Masson staining, AG-1024 mitigated typical renal damage and interstitial fibrosis in DN rats. Then, the anti-inflammatory effect of AG-1024 was assessed by western blotting and ELISA. Mechanistically, AG-1024 upregulated SOCS1 and SOCS3 expression and decreased phosphorylated JAK2, STAT1, and STAT3, as shown by western blotting. Collectively, AG-1024 (an IGF-1R inhibitor) ameliorates renal injury in experimental DN by attenuating renal inflammation and fibrosis via the SOCS/JAK2/STAT pathway.

2.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35215353

ABSTRACT

JAK1 depletion or downregulation was previously reported to account for coronavirus inhibition. Here, we found that AG1024, an IR (insulin receptor) and IGF-1R (insulin-like growth factor 1 receptor) inhibitor, diminishes JAK1 protein levels and exerts anti-coronaviral activities with EC50 values of 5.2 ± 0.3 µM against transmissible gastroenteritis coronavirus (TGEV) and 4.3 ± 0.3 µM against human flu coronavirus OC43. However, although the IR and IGF-1R signaling pathways are activated by insulin or IGF-1 in swine testis cells, they are not triggered upon TGEV infection. AG1024, therefore, inhibits coronaviral replication and downregulates JAK1 protein levels independently of IR and IGF-1R. Moreover, JAK1 proteolysis caused by AG1024 was found through activation of upstream Ndfip1/2 and its effector NEDD4-like E3 ligase Itch. In addition, ouabain, which was reported to mediate JAK1 proteolysis causing anti-coronaviral activity by activation of Ndfip1/2 and NEDD4 E3 ligase, additively inhibited anti-coronaviral activity and JAK1 diminishment in combination with AG1024. This study provides novel insights into the pharmacological effects of AG1024 and Itch E3 ligase mediated JAK1 proteolysis and identified Ndfip1/2 as a cognate effector for JAK1 proteolysis via the diversified E3 ligases NEDD4 and NEDD4-like Itch. These findings are expected to provide valued information for the future development of anti-viral agents.

3.
Toxicol Lett ; 360: 62-70, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35149128

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a receptor-type transcription factor that is crucial for endocrine disruption and carcinogenesis caused by environment chemicals. Previous studies have indicated that certain intracellular signals are involved in AhR activation by their agonists, but the detailed mechanism remains unclear. In this study, we screened for important molecules for AhR activation using SCAD inhibitor kits. Among 164 kinase inhibitors listed in these kits, tyrphostin AG1024, commonly used as an inhibitor of insulin-like growth factor receptor (IGF1R) and insulin receptor (IR), was identified as a potent inhibitor of 3-methylcholanthrene (MC)-mediated AhR activation. We further investigated the mechanism by which AG1024 suppresses MC-mediated AhR activation. AG1024 decreased AhR-dependent luciferase activity, CYP1A1 gene expression, and its protein expression. However, when IGF1R siRNA and IR siRNA were used, AhR activation was slightly increased, in contrast to AG1024 treatment. In addition, AG1024 treatment downregulated the expression of AhR protein but not AhR gene, and decreased both nucleic and cytosolic AhR proteins. Therefore, AG1024 suppressed AhR activation by downregulating AhR protein expression. The molecular target of AG1024 remains unclear, and should be an important target for the regulation of AhR-dependent toxicity.


Subject(s)
Receptors, Aryl Hydrocarbon , Tyrphostins , Cytochrome P-450 CYP1A1/metabolism , Receptor, Insulin , Receptors, Aryl Hydrocarbon/metabolism , Tyrphostins/toxicity
4.
Onco Targets Ther ; 14: 1049-1059, 2021.
Article in English | MEDLINE | ID: mdl-33623392

ABSTRACT

PURPOSE: The frequency in resistance to sorafenib accounts for the grim prognosis of advanced hepatocellular carcinoma (HCC). In the present study, we explore the anti-cancer efficacy of co-administration of sub-toxic AG-1024 with sorafenib in HCC cells to enhance the sensitivity of these cells to sorafenib. MATERIALS AND METHODS: Two acquired sorafenib-resistant HCC cells, SNU-sora-5 and SK-sora-5, were established and verified. The MTT assay, colony formation assay, cell morphology detection and flow cytometric analysis were then used to determine the anti-tumor effects of the co-administration of sub-toxic AG-1024 and sorafenib. Finally, the potential molecular mechanism was preliminarily examined. RESULTS: Compared to parental cell lines, the acquired sorafenib-resistant cell lines, SNU-sora-5 and SK-sora-5, were more resistant to sorafenib. Sub-toxic AG-1024 markedly enhanced sorafenib-mediated cell inhibition in acquired sorafenib-resistant HCC strains, with a reversal index (RI) of 4.64 in SNU-sora-5 and 4.58 in SK-sora-5 cell lines. Moreover, co-administration of sub-toxic AG-1024 and sorafenib exerted dramatic cytotoxicity compared with sorafenib alone in the intrinsic sorafenib-resistant HCC-LM3 cells. In contrast to high-dose sorafenib, sub-toxic AG-1024 combined with sorafenib had less impact on apoptosis while significantly enhancing G1/S arrest via activation of the mTOR/p21 signaling pathway. The more, pharmacological inhibition of mTOR activity by inhibitor Palomid 529 significantly antagonized the synergistic anti-cancer effects of AG-1024 and sorafenib in HCC cells. CONCLUSION: The current findings indicate that sub-toxic AG-1024 may be a promising therapeutic agent in enhancing the sensitivity in HCC cells to sorafenib, bringing hope to HCC patients refractory to sorafenib treatment.

5.
Oncol Lett ; 18(1): 822-829, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31289559

ABSTRACT

Triptolide (TPL) is an active extract from a Chinese herb, which has been used for centuries in China. TPL exhibits numerous bioactivities and pharmacological effects, including antitumor, anti-inflammatory and immunosuppressive activities. However, previous studies have further revealed a multi-target toxicity of TPL, including reproductive toxicity, hepatotoxicity and renal cytotoxicity. To validate the clinical benefit and reduce the risk of TPL application, studies have investigated the combination of TPL with other reagents to allow lower doses and decrease toxicity. The present study reported that TPL and the insulin-like growth factor-1 receptor (IGF1R) inhibitor AG1024synergistically inhibited cell proliferation and induced apoptosis in triple-negative breast cancer cells. Overexpression of B-cell lymphoma 2 partially reversed the TPL and AG1024-induced increase in apoptosis. A similar synergistic effect was observed with a combination of AG1024 and cisplatin, a DNA damage inducer, in MDA-MB-231 cells. These results suggested that inhibition of IGF1R may sensitize triple-negative breast cancer cells to DNA damage inducers. Using publicly available data from The Cancer Genome Atlas, an amplification and gain of copy number of IGF1R was observed in 38% of triple-negative breast tumors (n=82), 26% of estrogen receptor (ER)-negative tumors (n=174) and 10% of ER-positive tumors (n=594). Similarly, a higher alteration frequency of IGF1R was identified in basal-like breast tumors compared with luminal A/B-like breast tumors. Overexpressed proteins associated with these alterations were revealed to be significantly enriched in multiple oncogenic signaling pathways, key transcription factor networks and DNA repair pathways. In summary, the present study suggested that inhibition of IGFR signaling and induction of DNA damage may exhibit synergistic effects for the treatment of triple-negative and ER-negative breast cancer.

6.
Oncotarget ; 8(47): 81776-81793, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137221

ABSTRACT

Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines (N=16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo. We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.

7.
Biomed Pharmacother ; 95: 1346-1358, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28946182

ABSTRACT

BACKGROUND AND OBJECTIVE: Tyrphostin "AG1024" is an insulin growth factor-1 receptor (IGF-1R) inhibitor that displayed an effect on the viability of larval and mature schistosomes in vitro. We sought to investigate the possible in vivo role of AG1024 as a potential new anti-Schistosoma drug against immature and adult stages of Schistosoma mansoni and its effect on the degree of hepatic fibrosis and insulin pathway. METHODS: The study included a control non-infected group and 5 groups of S. manosoni-infected CD-1 albino mice (20 mice each) assigned to treatment as follows: vehicle-treated, early AG1024, 30µg/100µl DMSO, IP for 10days started 30days post-infection (dpi), early praziquantel (PZQ), 500mg/kg orally for 2days (30dpi), late AG1024 (60dpi), and late PZQ (60dpi). All mice were sacrificed 12 weeks post-infection. Parasitological, chemical and histopathological parameters were studied. Immunohistochemistry of TGF-ß and GLUT4 in liver sections was done to further evaluate the effect of AG1024 on the degree of hepatic fibrosis and insulin signaling pathway, respectively. RESULTS: Early administration of AG1024 (30dpi) resulted in significant reduction of hepatic and intestinal tissue egg count with a reduction of 79.99% and 89.1% respectively. Late administration of AG1024 (60dpi) led to 77.78% reduction of intestinal eggs count; however, hepatic egg count wasn't reduced significantly. No reduction in worm burden was recorded for both administration regimens. Both regimens lead to significant decrease of both ALT and AST, mean hepatic granuloma diameter but an increase in fibrosis percentage (65.2% and 55% respectively). Both early and late treatment with AG1024 showed a significant increment of TGF-ß expression by 71.4% and 39.3%, respectively (p<0.0001) compared to PZQ-treated and infected non-treated groups. Hepatic GLUT4 expression was significantly decreased compared to infected non-treated group (p<0.001) and the corresponding PZQ-treated group. CONCLUSION: Early AG1024 administration induced more significant results compared to early PZQ with a promising activity against egg production and subsequent reduction of tissue egg load rather than direct schistosomicidal effect; however, it induced granuloma fibrosis, TGF-ß expression, and disrupted the insulin signaling pathway.


Subject(s)
Receptor, IGF Type 1/antagonists & inhibitors , Schistosomicides/therapeutic use , Tyrphostins/pharmacology , Animals , Antigens, Helminth/urine , Body Weight , Female , Glucose Transporter Type 4/metabolism , Homeostasis/drug effects , Insulin Resistance , Liver/drug effects , Liver/parasitology , Liver/pathology , Mice , Organ Size , Praziquantel/pharmacology , Receptor, IGF Type 1/metabolism , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/urine , Schistosomicides/administration & dosage , Schistosomicides/pharmacology , Transforming Growth Factor beta/metabolism , Tyrphostins/administration & dosage , Tyrphostins/therapeutic use
8.
J Huazhong Univ Sci Technolog Med Sci ; 35(6): 834-841, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26670433

ABSTRACT

The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling components have been increasingly recognized to drive the development of malignancies, including non-small cell lung cancer (NSCLC). This study aimed to investigate the effects of IGF-1R and its inhibitor, AG1024, on the progression of lung cancer. Tissue microarray and immunohistochemistry were employed to detect the expressions of IGF-1 and IGF-1R in NSCLC tissues (n=198). Western blotting was used to determine the expressions of IGF-1 and phosphorylated IGF-1R (p-IGF-1R) in A549 human lung carcinoma cells, and MTT assay to measure cell proliferation. Additionally, the expressions of IGF-1, p-IGF-1R and IGF-1R in a mouse model of lung cancer were detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (FQ-PCR), respectively. The results showed that IGF-1 and IGF-1R were overexpressed in NSCLC tissues. The expression levels of IGF-1 and p-IGF-1R were significantly increased in A549 cells treated with IGF-1 as compared to those treated with IGF-1+AG1024 or untreated cells. In the presence of IGF-1, the proliferation of A549 cells was significantly increased. The progression of lung cancer in mice treated with IGF-1 was significantly increased as compared to the group treated with IGF-1+AG1024 or the control group, with the same trend mirrored in IGF-1/p-IGF-1R/IGF-1R at the protein and/or mRNA levels. It was concluded that IGF-1 and IGF inhibitor AG1024 promotes lung cancer progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Lung Neoplasms/pathology , Receptor, IGF Type 1/physiology , Tyrphostins/pharmacology , Adult , Aged , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Disease Progression , Female , Humans , Insulin-Like Growth Factor I/metabolism , Lung Neoplasms/metabolism , Male , Mice , Middle Aged , Receptor, IGF Type 1/antagonists & inhibitors
9.
Article in English | WPRIM (Western Pacific) | ID: wpr-250333

ABSTRACT

The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling components have been increasingly recognized to drive the development of malignancies, including non-small cell lung cancer (NSCLC). This study aimed to investigate the effects of IGF-1R and its inhibitor, AG1024, on the progression of lung cancer. Tissue microarray and immunohistochemistry were employed to detect the expressions of IGF-1 and IGF-1R in NSCLC tissues (n=198). Western blotting was used to determine the expressions of IGF-1 and phosphorylated IGF-1R (p-IGF-1R) in A549 human lung carcinoma cells, and MTT assay to measure cell proliferation. Additionally, the expressions of IGF-1, p-IGF-1R and IGF-1R in a mouse model of lung cancer were detected by Western blotting and real-time fluorescence quantitative polymerase chain reaction (FQ-PCR), respectively. The results showed that IGF-1 and IGF-1R were overexpressed in NSCLC tissues. The expression levels of IGF-1 and p-IGF-1R were significantly increased in A549 cells treated with IGF-1 as compared to those treated with IGF-1+AG1024 or untreated cells. In the presence of IGF-1, the proliferation of A549 cells was significantly increased. The progression of lung cancer in mice treated with IGF-1 was significantly increased as compared to the group treated with IGF-1+AG1024 or the control group, with the same trend mirrored in IGF-1/p-IGF-1R/IGF-1R at the protein and/or mRNA levels. It was concluded that IGF-1 and IGF inhibitor AG1024 promotes lung cancer progression.


Subject(s)
Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Non-Small-Cell Lung , Metabolism , Pathology , Cell Proliferation , Disease Models, Animal , Disease Progression , Insulin-Like Growth Factor I , Metabolism , Lung Neoplasms , Metabolism , Pathology , Receptor, IGF Type 1 , Physiology , Tyrphostins , Pharmacology
10.
Life Sci ; 102(2): 118-26, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24657894

ABSTRACT

AIMS: Chronic myelogenous leukemia is a clonal malignancy of the pluripotent hematopoietic stem cells that is characterized by the uncontrolled proliferation and expansion of myeloid progenitors. Myeloid progenitors express the fusion oncogene BCR-ABL, which has uncontrollable activity in malignant cells and prevents the cell apoptosis caused by some antineoplastic agents, such as paclitaxel. Targeting these abnormalities by blocking the tyrosine kinase enzymes of BCR-ABL is a promising approach for chronic myelogenous leukemia therapy. MAIN METHODS: Conventional Liu's staining is an auxiliary technique used in microscopy to enhance the contrast in microscopic images, aiding the observation of cell morphology. The MTT assay, flow cytometry of the sub-G1 analysis and the TUNEL assay were applied to estimate the apoptosis levels. RT-PCR and western blot methods were used to evaluate the key molecules conferring anti-cell-death properties. KEY FINDINGS: The effects of the tyrosine kinase inhibitor AG1024 were evaluated with regard to the regulation of BCR-ABL expression, inhibition of cell proliferation, and enhanced paclitaxel-induced apoptosis in BCR-ABL-expressing K562 cell lines. AG1024 downregulated the expression of BCR-ABL and anti-apoptosis factors, such as Bcl-2 and Bcl-xL, which were present in K562 cells. Moreover, the combination of AG1024 with paclitaxel inhibited cell proliferation and enhanced paclitaxel-induced apoptosis within 24h. SIGNIFICANCE: In summary, the present study shows that the combination of AG1024 with paclitaxel inhibited model cancer cell proliferation, suggesting a new use of paclitaxel-based chemotherapy for cancer control.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Apoptosis/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Paclitaxel/administration & dosage , Tyrphostins/administration & dosage , Up-Regulation/drug effects , Apoptosis/physiology , Drug Delivery Systems/methods , Drug Therapy, Combination , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Up-Regulation/physiology
11.
Expert Rev Endocrinol Metab ; 1(1): 33-46, 2006 Jan.
Article in English | MEDLINE | ID: mdl-30743767

ABSTRACT

Insulin-like growth factor-I receptor (IGF-IR) signaling is involved in many fundamental adverse aspects of cancer cell biology, such as proliferation, cell survival and migration. Its anti-apoptotic properties have implicated the receptor in mediating decreased sensitivity to chemotherapeutic drugs and radiation treatment; however, data are emerging that also indicates a role for IGF-IR signaling in resistance, not only to antihormones but also to antigrowth factor strategies such as agents that target the erb family of receptors. As such, IGF-IR is clearly an attractive therapeutic target for the treatment of cancer, including breast cancer, where there is evidence of clinical prominence of the IGF-IR pathway and, as such, numerous strategies are currently in development to inhibit IGF-IR signaling. This review focuses on the ability of the IGF-IR to contribute to resistance mechanisms that support breast cancer cell growth in the presence of antihormones and antigrowth factors and discusses methods to maximize antitumor effects by combination regimens cotargeting the IGF-IR that may delay, or even prevent, progression to the resistant phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL