Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Materials (Basel) ; 17(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39063685

ABSTRACT

The combination of kinematic and isotropic hardening models makes it possible to model the behaviour of cyclic elastic-plastic steel material, though the estimation of the hardening parameters and catching the influence of those parameters on the material response is a challenging task. In the current work, an approach for the numerical simulation of the low-cycle fatigue of AISI316L steel is presented using a finite element method to study the fatigue behaviour of the steel at different strain amplitudes and operating temperatures. Fully reversed uniaxial LCF tests are performed at different strain amplitudes and operating temperatures. Based on the LCF test experimental results, the non-linear isotropic and kinematic hardening parameters are estimated for numerical simulation. On comparing, the numerical simulation results were in very good agreement with those of the experimental ones. This presented method for the numerical simulation of the low-cycle fatigue on AISI316 stainless steel can be used for the approximate prediction of the fatigue life of the components under different cyclic loading amplitudes.

2.
ACS Biomater Sci Eng ; 10(7): 4297-4310, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38900847

ABSTRACT

Interfaces between AISI 304 stainless steel screws and cranial bone were investigated after long-term implantation lasting for 42 years. Samples containing the interface regions were analyzed using state-of-the-art analytical techniques including secondary ion mass, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies. Local samples for scanning transmission electron microscopy were cut from the interface regions using the focused ion beam technique. A chemical composition across the interface was recorded in length scales covering micrometric and nanometric resolutions and relevant differences were found between peri-implant and the distant cranial bone, indicating generally younger bone tissue in the peri-implant area. Furthermore, the energy dispersive spectroscopy revealed an 80 nm thick steel surface layer enriched by oxygen suggesting that the AISI 304 material undergoes a corrosion attack. The attack is associated with transport of metallic ions, namely, ferrous and ferric iron, into the bone layer adjacent to the implant. The results comply with an anticipated interplay between released iron ions and osteoclast proliferation. The interplay gives rise to an autocatalytic process in which the iron ions stimulate the osteoclast activity while a formation of fresh bone resorption sites boosts the corrosion process through interactions between acidic osteoclast extracellular compartments and the implant surface. The autocatalytic process thus may account for an accelerated turnover of the peri-implant bone.


Subject(s)
Bone Screws , Skull , Stainless Steel , Bone Screws/adverse effects , Stainless Steel/chemistry , Humans , Corrosion , Skull/pathology , Spectroscopy, Fourier Transform Infrared , Bone-Implant Interface , Surface Properties , Photoelectron Spectroscopy , Spectrum Analysis, Raman , Iron/chemistry
3.
Materials (Basel) ; 17(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894039

ABSTRACT

Current research studies devoted to cutting forces in drilling are oriented toward predictive model development, however, in the case of mechanistic models, the material effect on the drilling process itself is mostly not considered. This research study aims to experimentally analyze how the machined material affects the feed force (Ff) during drilling, alongside developing predictive mathematical-statistical models to understand the main effects and interactions of the considered technological and tool factors on Ff. By conducting experiments involving six factors (feed, cutting speed, drill diameter, point angle, lip relief angle, and helix angle) at five levels, the drilling process of stainless steel AISI1045 and case-hardened steel 16MnCr5 is executed to validate the numerical accuracy of the established prediction models (AdjR = 99.600% for C45 and AdjR = 97.912% for 16MnCr5). The statistical evaluation (ANOVA, RSM, and Lack of Fit) of the data proves that the drilled material affects the Ff value at the level of 17.600% (p < 0.000). The effect of feed represents 44.867% in C45 and 34.087% in 16MnCr5; the cutting speed is significant when machining C45 steel only (9.109%). When machining 16MnCr5 compared to C45 steel, the influence of the point angle (lip relief angle) is lower by 49.198% (by 22.509%). The effect of the helix angle is 163.060% higher when machining 16MnCr5.

4.
Materials (Basel) ; 17(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38730976

ABSTRACT

The automobile industry relies primarily on spot welding operations, particularly resistance spot welding (RSW). The performance and durability of the resistance spot-welded joints are significantly impacted by the welding quality outputs, such as the shear force, nugget diameter, failure mode, and the hardness of the welded joints. In light of this, the present study sought to determine how the aforementioned welding quality outputs of 0.5 and 1 mm thick austenitic stainless steel AISI 304 were affected by RSW parameters, such as welding current, welding time, pressure, holding time, squeezing time, and pulse welding. In order to guarantee precise evaluation and experimental analysis, it is essential that they are supported by a numerical model using an intelligent model. The primary objective of this research is to develop and enhance an intelligent model employing artificial neural network (ANN) models. This model aims to provide deeper knowledge of how the RSW parameters affect the quality of optimum joint behavior. The proposed neural network (NN) models were executed using different ANN structures with various training and transfer functions based on the feedforward backpropagation approach to find the optimal model. The performance of the ANN models was evaluated in accordance with validation metrics, like the mean squared error (MSE) and correlation coefficient (R2). Assessing the experimental findings revealed the maximum shear force and nugget diameter emerged to be 8.6 kN and 5.4 mm for the case of 1-1 mm, 3.298 kN and 4.1 mm for the case of 0.5-0.5 mm, and 4.031 kN and 4.9 mm for the case of 0.5-1 mm. Based on the results of the Pareto charts generated by the Minitab program, the most important parameter for the 1-1 mm case was the welding current; for the 0.5-0.5 mm case, it was pulse welding; and for the 0.5-1 mm case, it was holding time. When looking at the hardness results, it is clear that the nugget zone is much higher than the heat-affected zone (HZ) and base metal (BM) in all three cases. The ANN models showed that the one-output shear force model gave the best prediction, relating to the highest R and the lowest MSE compared to the one-output nugget diameter model and two-output structure. However, the Levenberg-Marquardt backpropagation (Trainlm) training function with the log sigmoid transfer function recorded the best prediction results of both ANN structures.

5.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612026

ABSTRACT

Changing the metallic card clothing on a carding machine is costly when the spinning mills want to card different fibers from cotton to terylene or vice versa. This article proposes a newly developed cylinder card clothing compatible with cotton and terylene fibers by Nb alloying of AISI 1090 steel so that the spinning mills can change the type of fiber without changing the card clothing. Based on an idea developed from classical carding balance theory to study the adaptability of the cylinder card clothing for cotton and terylene fibers, the wall shear stress was used as the basis for compatibility analysis of carding behavior and bearing capacity with cotton and terylene fibers and as the focus of this study. Nb alloying of AISI 1090 steel showed good wear resistance in carding areas after heat treatment with high hardness above 840 Hv0.2 and extremely fine grain grade of 13.5 class, which increased about 25% compared to conventional 80 WV. The testing results in the spinning mills, including one cotton and two terylene fibers, showed good performance with this newly developed card clothing. In conclusion, the card clothing made of Nb alloying of AISI 1090 steel can handle different fibers with acceptable carding performance.

6.
Materials (Basel) ; 17(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38541537

ABSTRACT

The growing demand for modern steels showing corrosion and tribological resistance has led to their increased use in the production of medical devices. This study analyzed the effect of shot peening on wear resistance in 0.9% NaCl solution of 17-4PH steel produced by direct laser metal sintering (DMLS) technology. The study's novelty relies on revealing the effect of shot peening (SP) surface treatment on the wet sliding wear resistance of 17-4PH steel produced with DMLS. Moreover, in the context of 17-4PH steel application for medical devices, the 0.9% NaCl tribological environment were selected, and SP processes were conducted using steel CrNi shot and ceramic (ZrO2) beads. The up-to-date scientific literature has not identified these gaps in the research. DMLS technology makes it possible to obtain products with complex architectures, but it also faces various challenges, including imperfections in the surface layer of products due to the use of 3D printing technology itself. The chemical and phase composition of the materials obtained, Vickers hardness, surface roughness, and microscopic and SEM imaging were investigated. Tribological tests were carried out using the ball-on-disc method, and the surfaces that showed traces of abrasion to identify wear mechanisms were subjected to SEM analysis. The XRD phase analysis indicates that austenite and martensite were found in the post-production state, while a higher martensitic phase content was found in peened samples due to phase transformations. The surface hardness of the peened samples increased by more than double, and the post-treatment roughness increased by 12.8% after peening CrNi steels and decreased by 7.8% after peening ZrO2 relative to the reference surfaces. Roughness has an identifiable effect on sliding wear resistance. Higher roughness promotes material loss. After the SP process, the coefficient of friction increased by 15.5% and 20.7%, while the wear factor (K) decreased by 25.9% and 32.7% for the samples peened with CrNi steels and ZrO2, respectively. Abrasive and adhesive mechanisms were dominant, featured with slight fatigue. The investigation showed a positive effect of SP on the tribological properties of DMSL 17-4PH.

7.
Heliyon ; 10(3): e25349, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333839

ABSTRACT

Cutting fluids are used for cooling and lubricating the machining area of components used in manufacturing industries such as aerospace, automotive, petroleum, and heavy machinery. Mineral oils derived from petroleum are commonly utilized as cutting fluids. Mineral oil is hazardous to the health of workers and damaging to the environment. There is a need for a substitute for mineral oil. Vegetable oil is increasingly being used as a cutting fluid. Vegetable oils are easily accessible and have benefits including excellent biodegradability, resistance to fire, low humidity rates, and a low coefficient of expansion under heat. This study adopts watermelon oil as a lubricant in MQL machining of AISI 1525 steel using tungsten tools. In the experiment, the feed rate, depth of cut (DC) and spindle speed were varied using the Taguchi L9 orthogonal array. Grey relational analysis was conducted to obtain optimum cutting parameters for surface roughness, machine vibration, and cutting temperature. Hardness and microstructural analysis of the workpiece were also conducted. Results showed that vegetable oil performed much more effectively than mineral oil in most experiments. The DC was shown to be the most efficient cutting parameter after applying ANOVA analysis based on the parameters that were evaluated. Additionally, models for cutting temperature, machine vibration, and surface roughness values have been developed with accuracy between 69.73 % and 99.05 %. The hardness of the workpiece increases with an increase in diameter, which was attributed to the increase in the steel rod (workpiece) cross-sectional area and the likelihood of a more uniform stress distribution. Moreover, finer grain sizes were observed at 70 mm diameter, with the predominant presence of pearlites. These characteristics were reportedly beneficial to the material's toughness and strength.

8.
Materials (Basel) ; 16(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959474

ABSTRACT

The effect of ion nitriding and nitriding in a melamine-based powder mixture on the structure and properties of AISI A290C1M steel was studied in the paper. Using ion nitriding made it possible to shorten the technological cycle's duration by 5-6 times compared to two-stage nitriding, optimize the diffusion layer's composition, provide a technologically simple process automation scheme, and improve the quality of nitride coatings. After the proposed mode of ion nitriding, a saturated layer depth of 0.25-0.32 mm, hardness up to 1000 HV, and an increase in wear resistance by 2.17 times were obtained. Using 95% melamine + 5% sodium fluoride during nitriding in a powder mixture significantly simplified the technological process. It did not require additional expensive equipment, which in turn significantly simplified the nitriding process with energy savings. The proposed technology and the composition of the mixture contributed to a significant acceleration of the nitriding process of AISI A290C1M steel, compared to traditional gas nitriding, and to obtain a hardness of the nitride layer of 970 HV and an increase in wear resistance by 2.6 times. A nitriding speed is explained by a significantly higher amount of atomic nitrogen when using melamine instead of ammonia and by the almost simultaneous disintegration of nanodispersed particles when the nitriding temperature was reached. After nitriding in a powder mixture, steel was subject to the slightest wear.

9.
Heliyon ; 9(11): e21364, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964819

ABSTRACT

The main aim of this research study was to characterize the microstructures and mechanical properties of Cu-AISI4140 steel solid-state joining created via the spark plasma welding (SPW) method with and without using molds. To explore the effect of mold on the joining of copper/steel, the SPW process was done at 650 °C for 30 min under the pressure of 20 MPa, with and without mold. Microstructural evaluations indicated the diffusion-affected zone (DAZ) in the SPW process increased with mold, as compared to the sample considered in the absence of the mold process. Also, the SPW process with the mold, in response to the lack of the formation of the oxide layer and dead zone, was affected by the process pressure, in comparison to that without the mold process, leading to the reduction of unjointed areas and the formation of micropores constrained at the joining interface; as such, the joining strength was increased from 42 MPa to 90 MPa. The elevation of the applied pressure from 20 MPa to 40 MPa at 650 °C resulted in enhancement of the joining strength up to 106 MPa, but it had no perceptible effect on raising the strength and diffusion affected zone (DAZ) of the joint.

10.
Materials (Basel) ; 16(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895764

ABSTRACT

Diffusion bonding has many advantages, but it also has its specifics. When creating heterogeneous joints, problems arise with the creation of intermetallic phases. For this reason, an interlayer is needed to prevent the creation of these unfavorable phases. It is important to ensure that the interlayer is of sufficient thickness to prevent the elements from diffusing through the entire interlayer and the intermetallic phases from being formed again. Conversely, too thick an interlayer causes an increase in the heterogeneity of the bond properties. The creation of the initial diffusion bonds in a heterogeneous diffusion joint of AISI 304 and AISI 316L steel with a 0.2 mm thick nickel interlayer was made in a Gleeble 3500. The experiments to determine the diffusion kinetics were carried out in a vacuum furnace, with subsequent evaluation by EDX (Energy Dispersive X-ray Spectroscopy) analysis. Subsequently, the diffusion coefficients of nickel into both steels were determined, and generalized equations were formulated to calculate the diffusion coefficients for temperatures in the range of 950 to 1150 °C and holding times in the range of 3600 to 18,000 s. Equations are also given to determine the width of the diffused zone between each steel and the Ni interlayer.

11.
Materials (Basel) ; 16(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895804

ABSTRACT

In this study, a surface hardening of AISI 52100 bearing steel was performed by ultrasonic nanocrystal surface modification (UNSM), and electrolytic-plasma thermo-cyclic surface modification (EPSM), and their effects on the wear resistance were investigated. To evaluate the impact of these treatments on the wear resistance, the friction tests under dry conditions were conducted using a ball-on-disk tribometer in accordance with ASTM G99. The microstructure of the samples before and after treatment was characterized by scanning electron microscopy. The micro-hardness with respect to the depth from the top surface was measured using a Vickers micro-hardness tester. Microstructural observations showed that EPSM treatment led to the formation of residual austenite in the surface layer, while UNSM treatment led to the formation of a surface severe plastic deformation layer on the surface of the samples. The increase in the micro-hardness of the treated layer was confirmed after UNSM at room temperature and after EPSM at different cycles. The highest increase in wear resistance was observed for the specimen treated by UNSM treatment at 700 °C and five cycles of EPSM treatment. In addition, the wear volume, which has correlation with the friction coefficient and hardness, was determined.

12.
Materials (Basel) ; 16(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687672

ABSTRACT

Additive manufacturing techniques are being used more and more to perform the precise fabrication of engineering components with complex geometries. The heterogeneity of additively manufactured microstructures deteriorates the mechanical integrity of products. In this paper, we printed AISI 316L stainless steel using the additive manufacturing technique of laser metal deposition. Both single-phase and dual-phase substructures were formed in the grain interiors. Electron backscatter diffraction and energy-dispersive X-ray spectroscopy indicate that Si, Mo, S, Cr were enriched, while Fe was depleted along the substructure boundaries. In situ micro-compression testing was performed at room temperature along the [001] orientation. The dual-phase substructures exhibited lower yield strength and higher Young's modulus compared with single-phase substructures. Our research provides a fundamental understanding of the relationship between the microstructure and mechanical properties of additively manufactured metallic materials. The results suggest that the uneven heat treatment in the printing process could have negative impacts on the mechanical properties due to elemental segregation.

13.
Data Brief ; 50: 109475, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37663778

ABSTRACT

There are several methods of analysis used in the metalworking industry for dry machining processes and with Minimum Quantity Lubrication (MQL). Evolutionary methods [1] have been used in the decision-making process in the machining process to select the optimal data and to analyze the behavior of variables such as cutting speed (V), feed rate (f) and cutting depth (ap). This work addresses the use of evolutionary algorithms of low dominance class II and III (NSGA-II and NSGA-III) to analyze from the multicriteria approach the initial wear of the cutting tool (VB), the energy consumption (E) and the machining time (t) in the turning process of the AISI 316L steel workpiece for biomedical purposes. As input variables to the algorithm with 54 records, there are: cutting speed (V: 200, 300, 400 m/min) and feed rate (f: 0.1, 0.15, 0.2 mm/rev). The experiment was developed for a dry (1) turning operation and with the use of MQL (-1). For the MQL lubrication regime, a TRI-COOL MD-1 lubricant was employed, a vegetable type used in ferrous and non-ferrous metal cutting operations. A BIDEMICS JX1 ceramic cutting tool was used.

14.
Materials (Basel) ; 16(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629975

ABSTRACT

The paper presents the results of an analysis of the process of drawing AISI 321 stainless steel thin-walled seamless tubes on a floating plug. The influence of the geometry of dies and plugs, drawing velocity, and lubricants on the possibility of carrying out the pipe drawing process without a loss of strength of the lubricating film and, consequently, disturbance of the forming process and tube cracking, and also on the temperature in the drawing process, the mechanical properties of the tubes drawn, and the microhardness and roughness of the inner and outer surface of the tubes was investigated. The parameters of the drawing tools used were as follows: angle of drawing dies α = 16° and floating plugs with angles of inclination of the conical part of the plug ß = 11.5°, 13°, and 14°. The drawing dies and floating plugs were made of G10 sintered carbide. Drawing speed was varied over the range 1 to 10 m/min. The study used several lubricants. Tubes with dimensions (outer diameter D0, wall thickness g0 before drawing process) D0 = 19 mm, g0 = 1.2 mm and D0 = 18 mm, g0 = 1.2 mm were drawn to produce tubes with dimensions (outer diameter Dk, wall thickness gk after drawing process) Dk = 16 mm, gk = 1.06 mm on a drawbench with the same total elongation, while the diameter and wall thickness were changed. During the process, continuous measurements were made of the drawing force and temperature in the deformation zone and on the tube surface. It was found that the drawing process causes a decrease in the roughness parameters Ra and Rz of the inner surface of the tubes. Moreover, after drawing, an increase of 30-70% was observed in the microhardness of the tube material in relation to the microhardness of the charge material. Based on the test results, it can be concluded that the work of frictional forces is the main direction of optimization of tube drawing on a floating plug process of hard-deforming materials.

15.
Materials (Basel) ; 16(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630005

ABSTRACT

Due to the combination of high corrosion resistance and suitable mechanical properties, AISI 316L stainless steel is extensively used as the biomaterial for surgical implants. However, heat exposure in inappropriate temperatures can cause its sensitization accompanied by chromium depletion along the grain boundaries. This study deals with an assessment of the susceptibility of sensitized AISI 316L biomaterial to pitting under conditions simulating the internal environment of the human body (Hank's balanced salt solution, 37 ± 0.5 °C). The resistance to pitting corrosion is tested by the potentiodynamic polarization and by the 50-day exposure immersion test. Corrosion damage after the exposure immersion test is evaluated in the specimens' cross-sections by optical microscope and SEM. Despite passive behavior in potentiodynamic polarization and shallow, slight corrosion damage observed after exposure, the sensitized AISI 316L biomaterial could represent a risk, especially in long-term implantation even after the chemical removal of high-temperature oxides.

16.
J Clin Med ; 12(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37510699

ABSTRACT

Combined indices of different haematological cell types appear to be particularly promising for investigating the link between systemic inflammation and coronavirus disease 2019 (COVID-19). We conducted a systematic review and meta-analysis to assess the aggregate index of systemic inflammation (AISI), an emerging index derived from neutrophil, monocyte, platelet, and lymphocyte counts, in hospitalized COVID-19 patients with different disease severity and survival status. We searched electronic databases between the 1st of December 2019 and the 10th of June 2023 and assessed the risk of bias and the certainty of evidence. In 13 studies, severe disease/death was associated with significantly higher AISI values on admission vs. non-severe disease/survival (standard mean difference (SMD) = 0.68, 95% CI 0.38 to 0.97, p < 0.001). The AISI was also significantly associated with severe disease/death in five studies reporting odds ratios (4.39, 95% CI 2.12 to 9.06, p ˂ 0.001), but not in three studies reporting hazard ratios (HR = 1.000, 95% CI 0.999 to 1.002, p = 0.39). The pooled sensitivity, specificity, and area under the curve values for severe disease/death were 0.66 (95% CI 0.58 to 0.73), 0.78 (95% CI 0.73 to 0.83), and 0.79 (95% CI 0.76 to 0.83), respectively. Our study has shown that the AISI on admission can effectively discriminate between patients with different disease severity and survival outcome (PROSPERO registration number: CRD42023438025).

17.
Materials (Basel) ; 16(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37374590

ABSTRACT

In this study, a comparison of measured cutting parameters is discussed while machining AISI 52100 low-alloy hardened steel under two different sustainable cutting environments, those in which a dry and minimum quantity lubrication (MQL) medium are used. A two-level full factorial design method has been utilized to specify the effect of different experimental inputs on the turning trials. Experiments were carried out to investigate the effects of three basic defining parameters of turning operation which are namely cutting speed, cutting depth, feed rate effects and also the effects of the cutting environment. The trials were repeated for the combination of different cutting input parameters. The scanning electron microscopy imaging method was used to characterize the tool wear phenomenon. The macro-morphology of chips was analyzed to define the influence of cutting conditions. The optimum cutting condition for high-strength AISI 52100 bearing steel was obtained using the MQL medium. The results were evaluated with graphical representations and they indicated the superiority of the pulverized oil particles on tribological performance of the cutting process with application of the MQL system.

18.
Materials (Basel) ; 16(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297056

ABSTRACT

The AISI 316L austenitic stainless steel fabricated by selective laser melting (SLM) is considered to have great prospects for applications in nuclear systems. This study investigated the He-irradiation response of SLM 316L, and several possible reasons for the improved He-irradiation resistance of SLM 316L were systematically revealed and evaluated by using TEM and related techniques. The results show that the effects of unique sub-grain boundaries have primary contributions to the decreased bubble diameter in SLM 316L compared to that in the conventional 316L counterpart, while the effects of oxide particles on bubble growth are not the dominant factor in this study. Moreover, the He densities inside the bubbles were carefully measured using electron energy loss spectroscopy (EELS). The mechanism of stress-dominated He densities in bubbles was validated, and the corresponding reasons for the decrease in bubble diameter were freshly proposed in SLM 316L. These insights help to shed light on the evolution of He bubbles and contribute to the ongoing development of the steels fabricated by SLM for advanced nuclear applications.

19.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297078

ABSTRACT

AISI 1065 is a carbon steels that is widely used in manufacturing industrial components owing to its high tensile strength and wear resistance. One of the major applications of such high-carbon steels is the manufacturing of multipoint cutting tools for materials such as metallic card clothing. The quality of the yarn is determined by the transfer efficiency of the doffer wire, which depends on its saw tooth geometry. The life and efficiency of the doffer wire depends on its hardness, sharpness, and wear resistance. This study focuses on the output of laser shock peening on the surface of the cutting edge of samples without an ablative layer. The obtained microstructure is bainite, which is composed of finely dispersed carbides in the ferrite matrix. The ablative layer induces 11.2 MPa more surface compressive residual stress. The sacrificial layer acts as a thermal protectant by decreasing surface roughness to 30.5%. The sample with a protective layer has a value of 216 HV, which is 11.2% greater than that of the unpeened sample.

20.
Materials (Basel) ; 16(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297219

ABSTRACT

The friction stir welding (FSW) process was recently developed to overcome the difficulty of welding non-ferrous alloys and steels. In this study, dissimilar butt joints between 6061-T6 aluminum alloy and AISI 316 stainless steel were welded by FSW using different processing parameters. The grain structure and precipitates at the different welded zones of the various joints were intensively characterized by the electron backscattering diffraction technique (EBSD). Subsequently, the FSWed joints were tensile tested to examine the mechanical strength compared with that of the base metals. The micro-indentation hardness measurements were conducted to reveal the mechanical responses of the different zones in the joint. The EBSD results of the microstructural evolution showed that a significant continuous dynamic recrystallization (CDRX) occurred in the stir zone (SZ) of the Al side, which was mainly composed of the weak metal, Al, and fragmentations of the steel. However, the steel underwent severe deformation and discontinuous dynamic recrystallization (DDRX). The FSW rotation speed increased the ultimate tensile strength (UTS) from 126 MPa at a rotation speed of 300 RPM to 162 MPa at a rotation speed of 500 RPM. The tensile failure occurred at the SZ on the Al side for all specimens. The impact of the microstructure change in the FSW zones was significantly pronounced in the micro-indentation hardness measurements. This was presumably attributed to the promotion of various strengthening mechanisms, such as grain refinement due to DRX (CDRX or DDRX), the appearance of intermetallic compounds, and strain hardening. The aluminum side underwent recrystallization as a result of the heat input in the SZ, but the stainless steel side did not experience recrystallization due to inadequate heat input, resulting in grain deformation instead.

SELECTION OF CITATIONS
SEARCH DETAIL