Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Front Med (Lausanne) ; 11: 1377302, 2024.
Article in English | MEDLINE | ID: mdl-38952864

ABSTRACT

Background: Acanthamoeba castellanii infection is a rare condition primarily occurring in immunocompromised patients with extremely high mortality. Currently, there is no standard treatment for this condition, and successful treatment reports are scarce. Case presentation: We present a case of Acanthamoeba castellanii infection in a 63-year-old female patient with AIDS, who was admitted to our hospital with symptoms of fever, skin ulcers, subcutaneous nodules, and food regurgitation from the nose while eating. After initial empirical treatment failed, a biopsy of the subcutaneous nodule was performed, and metagenomic next-generation sequencing (mNGS) technology was used to detect pathogenic microorganisms in both the biopsy specimen and blood samples. The results revealed Acanthamoeba castellanii infection. Additionally, histopathological examination of the biopsy specimen and cytological examination of the secretions from the ulcer surface also confirmed this pathogenic infection. The patient's symptoms significantly improved upon discharge after adjusting the treatment regimen to a combination of anti-amebic therapy. Conclusion: Immunocompromised patients presenting with unexplained fever and skin or sinus lesions should be evaluated for Acanthamoeba castellanii infection. Multi-drug combination therapy is required for this organism infection, and a standard treatment protocol still needs further research. Metagenomic next-generation sequencing is a valuable tool for early diagnosis of unknown pathogen infections.

2.
Article in English | MEDLINE | ID: mdl-38869777

ABSTRACT

Herein, we investigated the anti-amoebic activity of phosphonium-chloride-based deep eutectic solvents against pathogenic Acanthamoeba castellanii of the T4 genotype. Deep eutectic solvents are ionic fluids composed of two or three substances, capable of self-association to form a eutectic mixture with a melting point lower than each substance. In this study, three distinct hydrophobic deep eutectic solvents were formulated, employing trihexyltetradecylphosphonium chloride as the hydrogen bond acceptor and aspirin, dodecanoic acid, and 4-tert-butylbenzoic acid as the hydrogen bond donors. Subsequently, all three deep eutectic solvents, denoted as DES1, DES2, DES3 formulations, underwent investigations comprising amoebicidal, adhesion, excystation, cytotoxicity, and cytopathogenicity assays. The findings revealed that DES2 was the most potent anti-amoebic agent, with a 94% elimination rate against the amoebae within 24 h at 30 °C. Adhesion assays revealed that deep eutectic solvents hindered amoebae adhesion to human brain endothelial cells, with DES2 exhibiting 88% reduction of adhesion. Notably, DES3 exhibited remarkable anti-excystation properties, preventing 94% of cysts from reverting to trophozoites. In cytopathogenicity experiments, deep eutectic solvent formulations and dodecanoic acid alone reduced amoebae-induced human brain endothelial cell death, with DES2 showing the highest effects. Lactate dehydrogenase assays revealed the minimal cytotoxicity of the tested deep eutectic solvents, with the exception of trihexyltetradecylphosphonium chloride, which exhibited 35% endothelial cell damage. These findings underscore the potential of specific deep eutectic solvents in combating pathogenic Acanthamoeba, presenting promising avenues for further research and development against free-living amoebae.

3.
Acta Trop ; 257: 107288, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901524

ABSTRACT

Soluble factors in the secretome of Acanthamoeba castellanii play crucial roles in the pathogenesis of Acanthamoeba keratitis (AK). Investigating the pathological effects of A. castellanii-derived conditioned medium (ACCM) on ocular cells can provide insights into the damage inflicted during AK. This study examined ACCM-induced cytotoxicity in primary human corneal stromal cells (CSCs) and a human SV40 immortalized corneal epithelial cell line (ihCECs) at varying ACCM concentrations (25 %, 50 %, 75 %, and 100 %). MTT, AlamarBlue, Sulforhodamine B, lactate dehydrogenase, and Caspase-3/7 activation assays were used to assess the impact of ACCM on the cell viability, proliferation and apoptosis. Additionally, fluorescent staining was used to reveal actin cytoskeleton changes. ACCM exposure significantly decreased cell viability, increased apoptosis, and disrupted the actin cytoskeleton, particularly at higher concentrations and longer exposures. Proteases were found to mediate these cytopathogenic effects, highlighting the need for characterization of A. castellanii proteases as key virulence factors in AK pathogenesis.

4.
Sci Rep ; 14(1): 13610, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871751

ABSTRACT

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Molecular Docking Simulation , Plant Extracts , Acanthamoeba castellanii/drug effects , Acanthamoeba Keratitis/drug therapy , Acanthamoeba Keratitis/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Trophozoites/drug effects , Animals , Humans
5.
Eur J Protistol ; 94: 126091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772052

ABSTRACT

Acanthamoeba castellanii (Douglas, 1930) Page, 1967 is the type species of a widespread genus of free-living amoebae, potentially pathogenic for humans and animals. The Neff strain is one of the most widely used in biological research, serving as a model for both A. castellanii and the whole genus in general. The Neff strain, isolated in California, closely resembles another strain found in France and originally described as a separate species, Acanthamoeba terricola Pussard, 1964, but both were successively synonymized with A. castellanii. Molecular sequence analysis has largely replaced morphological diagnosis for species identification in Acanthamoeba, and rDNA phylogenies show that the Neff strain forms a distinct lineage from that of the type strain of A. castellanii. In this study, we compared the type strain of A. terricola with the Neff strain and A. castellanii, and analysed the available molecular data including new sequences obtained from A. terricola. Here we provide molecular evidence to validate the species A. terricola. The Neff strain is therefore transferred to A. terricola and should no longer be considered as belonging to A. castellanii.


Subject(s)
Acanthamoeba , DNA, Protozoan , Phylogeny , Acanthamoeba/classification , Acanthamoeba/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Species Specificity , Sequence Analysis, DNA , Molecular Sequence Data , Animals
6.
mSystems ; 9(6): e0122623, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38717186

ABSTRACT

We conducted a comprehensive comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains, Neff (environmental) and T4 (clinical). Morphological analysis via transmission electron microscopy revealed slightly larger Neff EVs (average = 194.5 nm) compared to more polydisperse T4 EVs (average = 168.4 nm). Nanoparticle tracking analysis (NTA) and dynamic light scattering validated these differences. Proteomic analysis of the EVs identified 1,352 proteins, with 1,107 common, 161 exclusive in Neff, and 84 exclusively in T4 EVs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed distinct molecular functions and biological processes and notably, the T4 EVs enrichment in serine proteases, aligned with its pathogenicity. Lipidomic analysis revealed a prevalence of unsaturated lipid species in Neff EVs, particularly triacylglycerols, phosphatidylethanolamines (PEs), and phosphatidylserine, while T4 EVs were enriched in diacylglycerols and diacylglyceryl trimethylhomoserine, phosphatidylcholine and less unsaturated PEs, suggesting differences in lipid metabolism and membrane permeability. Metabolomic analysis indicated Neff EVs enrichment in glycerolipid metabolism, glycolysis, and nucleotide synthesis, while T4 EVs, methionine metabolism. Furthermore, RNA-seq of EVs revealed differential transcript between the strains, with Neff EVs enriched in transcripts related to gluconeogenesis and translation, suggesting gene regulation and metabolic shift, while in the T4 EVs transcripts were associated with signal transduction and protein kinase activity, indicating rapid responses to environmental changes. In this novel study, data integration highlighted the differences in enzyme profiles, metabolic processes, and potential origins of EVs in the two strains shedding light on the diversity and complexity of A. castellanii EVs and having implications for understanding host-pathogen interactions and developing targeted interventions for Acanthamoeba-related diseases.IMPORTANCEA comprehensive and fully comparative analysis of extracellular vesicles (EVs) from two Acanthamoeba castellanii strains of distinct virulence, a Neff (environmental) and T4 (clinical), revealed striking differences in their morphology and protein, lipid, metabolites, and transcripts levels. Data integration highlighted the differences in enzyme profiles, metabolic processes, and potential distinct origin of EVs from both strains, shedding light on the diversity and complexity of A. castellanii EVs, with direct implications for understanding host-pathogen interactions, disease mechanisms, and developing new therapies for the clinical intervention of Acanthamoeba-related diseases.


Subject(s)
Acanthamoeba castellanii , Extracellular Vesicles , Proteomics , Acanthamoeba castellanii/metabolism , Acanthamoeba castellanii/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Humans , Lipid Metabolism/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Proteome/metabolism , Proteome/genetics
7.
Eur J Protistol ; 94: 126086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688045

ABSTRACT

Acanthamoeba castellanii, a free-living amoeba, can be pathogenic to humans causing a corneal infection named Acanthamoeba keratitis (AK). The mannose-binding protein (MBP) is well established as the major factor related to Acanthamoeba pathogenesis. However, additional factors that participate in the adhesion process and protect trophozoites from cytolytic effects caused by host immune responses remain unknown. Ectonucleotidases, including 3'-nucleotidase/nuclease (3'-NT/NU), a bifunctional enzyme that was recently reported in A. castellanii, are frequently related to the establishment of parasitic infections. We verified that trophozoites can hydrolyze 3'-AMP, and this activity is similar to that observed in other protists. The addition of 3'-AMP increases the adhesion of trophozoites to LLC-MK2 epithelial cells, and this stimulation is completely reversed by DTT, an inhibitor of ecto-3'-nucleotidase activity. Lesions in corneal cells caused by AK infection may elevate the extracellular level of 3'-AMP. We believe that ecto-3'-nucleotidase activity can modulate the host immune response, thus facilitating the establishment of parasitic infection. This activity results from the generation of extracellular adenosine, which can bind to purinergic receptors present in host immune cells. Positive feedback may occur in this cascade of events once the ecto-3'-nucleotidase activity of trophozoites is increased by the adhesion of trophozoites to LLC-MK2 cells.


Subject(s)
Acanthamoeba castellanii , Adenosine , Cell Adhesion , Trophozoites , Acanthamoeba castellanii/enzymology , Adenosine/metabolism , Cell Line , Animals , Nucleotidases/metabolism , Epithelial Cells/parasitology
8.
Front Cell Infect Microbiol ; 14: 1367656, 2024.
Article in English | MEDLINE | ID: mdl-38550616

ABSTRACT

Amoebae are micropredators that play an important role in controlling fungal populations in ecosystems. However, the interaction between fungi and their amoebic predators suggests that the pressure from predatory selection can significantly influence the development of fungal virulence and evolutionary processes. Thus, the purpose of this study was to investigate the adaptation of saprotrophic Candida albicans strains during their interactions with Acanthamoeba castellanii. We conducted a comprehensive analysis of survival after co-culture by colony counting of the yeast cells and examining yeast cell phenotypic and genetic characteristics. Our results indicated that exposure to amoebae enhanced the survival capacity of environmental C. albicans and induced visible morphological alterations in C. albicans, particularly by an increase in filamentation. These observed phenotypic changes were closely related to concurrent genetic variations. Notably, mutations in genes encoding transcriptional repressors (TUP1 and SSN6), recognized for their negative regulation of filamentous growth, were exclusively identified in amoeba-passaged isolates, and absent in unexposed isolates. Furthermore, these adaptations increased the exposed isolates' fitness against various stressors, simultaneously enhancing virulence factors and demonstrating an increased ability to invade A549 lung human epithelial cells. These observations indicate that the sustained survival of C. albicans under ongoing amoebic predation involved a key role of mutation events in microevolution to modulate the ability of these isolates to change phenotype and increase their virulence factors, demonstrating an enhanced potential to survive in diverse environmental niches.


Subject(s)
Amoeba , Candida albicans , Humans , Virulence/genetics , Ecosystem , Virulence Factors , Mutation , Phenotype
9.
Appl Environ Microbiol ; 90(2): e0173623, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259076

ABSTRACT

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Subject(s)
Acanthamoeba castellanii , Amoeba , beta-Glucans , Amoeba/metabolism , Mannose/metabolism , Proteomics , beta-Glucans/metabolism , Glucans/metabolism , Histoplasma/metabolism
10.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289423

ABSTRACT

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Amebiasis , Cysts , Humans , Acanthamoeba castellanii/genetics , Reactive Oxygen Species , Catalase
11.
Microbiol Spectr ; 12(1): e0268323, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38095463

ABSTRACT

IMPORTANCE: At the National Cheng Kung University Hospital, numerous cases of amoebic keratitis had been identified with concurrent bacterial infections. Among these bacterial coinfections, Pseudomonas aeruginosa accounted for 50% of the reported cases. However, the impact of pathogenic bacteria on amoeba-induced corneal damage remains unclear. In our study, we successfully demonstrated that P. aeruginosa accumulated on the Acanthamoeba castellanii surface and caused more severe corneal damage. We also indicated that the exposure of P. aeruginosa to amoeba-soluble antigens enhanced its adhesion ability, promoted biofilm formation, and led to more severe corneal cell damage. These findings significantly contributed to our understanding of the risk associated with P. aeruginosa coinfection in the progression of amoeba keratitis.


Subject(s)
Coinfection , Corneal Injuries , Keratitis , Humans , Pseudomonas aeruginosa , Coinfection/pathology , Cornea , Keratitis/pathology , Corneal Injuries/pathology
12.
Parasitol Int ; 98: 102814, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37806551

ABSTRACT

Acanthamoeba are ubiquitously distributed in the environment and can cause infection of the central nervous system as well a sight-threatening eye infection. Herein, the potential anti-amoebic activity of a series of sulfonate/sulfamate derivatives against pathogenic A. castellanii was evaluated. These compounds were tested using several assays namely amoebicidal, adhesion, excystation, cytotoxic, and cytopathogenicity. Amoebicidal assays revealed that the selected compounds reduced amoebae viability significantly (P < 0.05), and exhibited IC50 values at two-digit micromolar concentrations. Sulfamate derivatives 1j & 1k inhibited 50% of amoebae at 30.65 µM and 27.21 µM, respectively. The tested compounds blocked amoebae binding to host cells as well as inhibited amoebae excystation. Notably, the selected derivatives exhibited minimal human cell cytotoxicity but reduced parasite-mediated host cell damage. Overall, our study showed that sulfamate derivatives 1j & 1k have anti-amoebic potential and offer a promising avenue in the development of potential anti-amoebic drug candidates.


Subject(s)
Acanthamoeba castellanii , Amebicides , Humans , Acanthamoeba castellanii/genetics , Sulfonic Acids/pharmacology , Alkanesulfonates , Genotype
13.
Parasitol Res ; 123(1): 16, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060008

ABSTRACT

Several antimicrobial agents are commonly included in contact lens disinfectant solutions including chlorhexidine diacetate (CHX), polyhexamethylene biguanide (PHMB) or myristamidopropyl dimethylamine (MAPD); however, their mode of action, i.e. necrosis versus apoptosis is incompletely understood. Here, we determined whether a mechanism of cell death resembling that of apoptosis was present in Acanthamoeba castellanii of the T4 genotype (NEFF) following exposure to the aforementioned antimicrobials using the anticoagulant annexin V that undergoes rapid high affinity binding to phosphatidylserine in the presence of calcium, making it a sensitive probe for phosphatidylserine exposure. The results revealed that under the conditions employed in this study, an apoptotic pathway of cell death in this organism at the tested conditions does not occur. Our findings suggest that necrosis is the likely mode of action; however, future mechanistic studies should be accomplished in additional experimental conditions to further comprehend the molecular mechanisms of cell death in Acanthamoeba.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Contact Lenses , Humans , Contact Lens Solutions/pharmacology , Phosphatidylserines , Apoptosis , Necrosis
14.
Int Microbiol ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38015290

ABSTRACT

Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 µM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.

15.
Microorganisms ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004682

ABSTRACT

Amoebae found in aquatic and terrestrial environments encompass various pathogenic species, including the parasite Entamoeba histolytica and the free-living Acanthamoeba castellanii. Both microorganisms pose significant threats to public health, capable of inducing life-threatening effects on humans. These amoebae exist in two cellular forms: trophozoites and cysts. The trophozoite stage is the form used for growth and reproduction while the cyst stage is the resistant and disseminating form. Cysts occur after cellular metabolism slowdown due to nutritional deprivation or the appearance of environmental conditions unfavourable to the amoebae's growth and division. The initiation of encystation is accompanied by the activation of stress responses, and scarce data indicate that encystation shares factors and mechanisms identified in stress responses occurring in trophozoites exposed to toxic compounds derived from human immune defence. Although some "omics" analyses have explored how amoebae respond to diverse stresses, these studies remain limited and rarely report post-translational modifications that would provide knowledge on the molecular mechanisms underlying amoebae-specific stress responses. In this review, we discuss ubiquitin-like proteins associated with encystation and cell survival during oxidative damage. We aim to shed light on the signalling pathways involved in amoebic defence mechanisms, with a focus on their potential clinical implications against pathogenic amoebae, addressing the pressing need for effective therapies.

16.
Appl Environ Microbiol ; 89(11): e0109523, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37882527

ABSTRACT

IMPORTANCE: Persistence of V. cholerae in the aquatic environment contributes to the fatal diarrheal disease cholera, which remains a global health burden. In the environment, bacteria face predation pressure by heterotrophic protists such as the free-living amoeba A. castellanii. This study explores how a mutant of V. cholerae adapts to acquire essential nutrients and survive predation. Here, we observed that up-regulation of iron acquisition genes and genes regulating resistance to oxidative stress enhances pathogen fitness. Our data show that V. cholerae can defend predation to overcome nutrient limitation and oxidative stress, resulting in an enhanced survival inside the protozoan hosts.


Subject(s)
Amoeba , Cholera , Vibrio cholerae , Animals , Vibrio cholerae/genetics , Predatory Behavior , Cholera/microbiology , Iron
17.
Eur J Protistol ; 91: 126026, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871554

ABSTRACT

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba castellanii , Humans , Animals , Mannose/metabolism , Vanadates , Cell Adhesion/physiology , Sodium , Trophozoites
18.
Heliyon ; 9(9): e19599, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809484

ABSTRACT

Amoebae of the genus Acanthamoeba are etiological agents of amoebic keratitis, for which up to now there is no treatment of choice and one of its main risk factors is the use of contact lenses, including cosmetic contact lenses. Recently there has been an increase in amoebic keratitis cases due to the use of cosmetic contact lenses. Therefore, having a solution for the care of lenses with an efficient disinfectant effect that prevents the adhesion of trophozoites to lenses becomes essential. This study was carried out to determine the effect of 8 multipurpose contact lenses care solutions on Acanthamoeba castellanii trophozoites viability, and the efficiency of two of them to prevent the trophozoites adherence onto two cosmetic contact lenses (Acuvue 2, approved by the US Food and Drug Administration, and Magic Eye CCL, not approved). After 3 h of interaction, only AO Sept Plus, OPTI FREE Replenish, Renu Plus, Bio True and Multiplus significantly reduced the number of viable trophozoites with respect to the control; at 6 h Renu Plus, and at 12 h Conta Soft Plus and Multiplus, maintained the inhibitory effect. Only Opti Free Pure Moist did not significantly reduce the number of viable trophozoites. Multiplus and Opti Free Pure Moist (selected for their greater and lesser antiamibic effect) significantly reduced trophozoite adherence to both lenses; however, Opti Free Pure Moist was more efficient, despite the fact that A. castellanii adhered similarly to both lenses. Our results show that in all the multipurpose solutions evaluated, hundreds of viable A. castellanii trophozoites remain after several hours of incubation. Therefore, storage of the lenses in their case with MPS maintains the potential risk of amoebic keratitis in, cosmetic contact lenses wearers. Moreover, the use of CCL, not approved by the FDA, can increase the risk factor for AK since its poor manufacture can favor the permanence of amoebae, in addition to being a risk for corneal integrity.

19.
Exp Eye Res ; 236: 109669, 2023 11.
Article in English | MEDLINE | ID: mdl-37774962

ABSTRACT

Therapeutic management of inflammation in infectious keratitis (IK) requires new strategy and targets for selective immunomodulation. Targeting host cell-type specific inflammatory responses might be a viable strategy to curtail unnecessary inflammation and reduce tissue damage without affecting pathogen clearance. This study explores the possibility of pathogen and host cell-type dependent differences in the inflammatory pathways relevant in the pathogenesis of IK. Human corneal epithelial cell line (HCEC) and phorbol 12-myristate-13 acetate (PMA) differentiated THP-1 macrophage line were infected with either Aspergillus flavus conidia or Acanthamoeba castellanii trophozoites and the elicited inflammatory responses were studied in terms of gene expression and secretion of proinflammatory factors interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) and an upstream inflammatory regulator and mediator protein-the Macrophage Migration Inhibitory Factor (MIF). Given the pleotropic mode of MIF function in diverse cell types relevant in many human diseases, we tested if MIF driven responses to infection is different in HCECs and THP-1 macrophages by studying its expression, secretion and involvement in inflammation by siRNA mediated knockdown. We also examined IK patient tear samples for MIF levels. Infection with A. flavus or A. castellanii induced IL-8 and TNF-α responses in HCECs and THP-1 macrophages but to different levels. Our preliminary human data showed that the level of secreted MIF protein was elevated in IK patient tear, however, MIF secretion by the two cell types were strikingly different in-vitro, under both normal and infected conditions. We found that HCECs released MIF constitutively, which was significantly inhibited with infection, whereas THP-1 macrophages were stimulated to release MIF during infection. MIF gene expression remained largely unaffected by infection in both the cell lines. Although MIF in HCECs appeared to be intracellularly captured during infection, MIF knockdown in HCECs associated with a partial reduction of the IL-8 and TNF-α expression produced by either of the pathogens, suggesting a pro-inflammatory role for MIF in HCECs, independent of its canonical cytokine like function. In contrast, MIF knockdown in THP-1 macrophages accompanied a dramatic increase in IL-8 and TNF-α expression during A. castellanii infection, while the responses to A. flavus infection remained unchanged. These data imply a host cell-type and pathogen specific distinction in the MIF- related inflammatory signaling and MIF as a potential selective immunomodulatory target in infectious keratitis.


Subject(s)
Keratitis , Macrophage Migration-Inhibitory Factors , Humans , Macrophage Migration-Inhibitory Factors/genetics , Tumor Necrosis Factor-alpha , Interleukin-8/genetics , Inflammation , Immunomodulation , Intramolecular Oxidoreductases
20.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37653467

ABSTRACT

Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease or Legionellosis. This bacterium is found in the environment interacting with free-living amoebae such as Acanthamoeba castellanii. Until now, proteomic analyses have been done in amoebae infected with L. pneumophila but focused on the Legionella-containing vacuole. In this study, we propose a global proteomic analysis of the A. castellanii proteome following infection with L. pneumophila wild-type (WT) or with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly. We found that infection with L. pneumophila WT leads to reduced levels of A. castellanii proteins associated with lipid homeostasis/metabolism, GTPase regulation, and kinase. The levels of organelle-associated proteins were also decreased during infection. Legionellapneumophila WT infection leads to increased levels of proteins associated with polyubiquitination, folding or degradation, and antioxidant activities. This study reinforces our knowledge of this too little explored but so fundamental interaction between L. pneumophila and A. castellanii, to understand how the bacterium could resist amoeba digestion.


Subject(s)
Acanthamoeba castellanii , Legionella pneumophila , Legionnaires' Disease , Humans , Proteomics , Legionella pneumophila/genetics , Homeostasis
SELECTION OF CITATIONS
SEARCH DETAIL