Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.814
Filter
1.
J Med Entomol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096529

ABSTRACT

Discarded vehicle tires serve as habitat for mosquito vectors. In New Orleans, Louisiana, discarded tires are an increasingly important public concern, especially considering that the city is home to many medically important mosquito species. Discarded tires are known to be associated with mosquito abundance, but how their presence interacts with other socioenvironmental gradients to influence mosquito ecology is poorly understood. Here, we ask whether discarded tire distribution could be explained by social factors, particularly median income, home vacancy and human population density, and whether these factors interact with urban heat islands (UHI) to drive mosquito vector assemblages. We surveyed tire piles across the city and adult mosquitoes in 12 sites, between May and October of 2020. We compared this data with the social indicators selected and UHI estimates. Our results show that median income and human population density were inversely related to tire abundance. Tire abundance was positively associated with Aedes albopictus abundance in places of low heat (LS) severity. Heat was the only predictor for the other monitored species, where high heat corresponded to higher abundance of Aedes aegypti, and LS to higher abundance of Culex quinquefasciatus. Our results suggest that low-income, sparsely populated neighborhoods of New Orleans may be hotspots for discarded vehicle tires, and are associated with higher abundances of at least one medically important mosquito (Ae. albopictus). These findings suggest potential locations for prioritizing source reduction efforts to control mosquito vectors and highlight discarded tires as a potential exposure pathway to unequal disease risk for low-income residents.

2.
BMC Public Health ; 24(1): 2096, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095794

ABSTRACT

BACKGROUND: To assess whether the 'economic boom' in the tropical seaport city of Barranquilla improved tapped water supplies to socio-economically poor neighbourhoods resulting in: (1) their reduced use for domestic water-storage in large (> 1,000-litre) custom-made cement tanks which are their principal Aedes aegypti breeding sites and (2) their pupae/person index (PPI) values to below their established 0.5-1.5 PPI arbovirus transmission-threshold value, compared to matched neighbourhoods in the: (a) pre-economic boom (2004) period in Barranquilla and (b) economically-neglected seaport city of Buenaventura. METHODS: The simple, accurate and robust water surface sweep-net/calibration factor or total count methods were used to determine the total Ae. aegypti pupae numbers in greater or less than 20-litre water-holding container types located 'inside' or 'outside' these neighbourhood premises. The women residents also participated in questionnaire-based responses about their domestic water supplies, water-storage and maintenance and mosquito life stages and disease transmission knowledge, to subsequently plan appropriate resident education programmes. Microsoft Excel 8.0 with OpenEpi was used to determine the samples sizes and the statistical values. RESULTS: Tapped water supplies to the three poor Barranquilla neighbourhoods were dramatically increased from 2004 to 2023 resulting in their residents significantly reducing their: (a) large cement water-storage tanks from 1 per 6.9 (2004) to 1 per 31.2 (2020) premises (z = 10.5: p = 0) and (b) PPI values to 0.16, 0.19 and 0.53 (mean: 0.29: 95% CI ± 0.4) in each study neighbourhood. In contrast, tapped water supplies remained inadequate in the Buenaventura neighborhoods, thereby resulting in their continued use of many large (> 1,000-litre) water-storage containers (Barranquilla: 1 per 31.2 and Buenaventura: 1 per 1.5 premises: z = - 9.26: p = 0), with unacceptably high 0.81, 0.88 and 0.99 PPI values in each study neighbourhood (mean 0.89: 95% CI ± 0.12). CONCLUSIONS: Improved tapped water supplies resulted in reduced numbers of large custom-made stoneware water-containers, as are employed by poor residents throughout the world, as well as their Ae. aegypti PPI transmission threshold values which, together with appropriate residents' education programmes, are also urgently to reduce to prevent/reduce Ae. aegypti transmitted human diseases globally.


Subject(s)
Aedes , Water Supply , Animals , Humans , Female , Mosquito Vectors , Arbovirus Infections/transmission , Pupa , Dengue/transmission , Mosquito Control/methods , Colombia , Adult , Residence Characteristics/statistics & numerical data
3.
Trop Med Health ; 52(1): 51, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095931

ABSTRACT

BACKGROUND: Describing spatio-temporal occurrence and habitat characteristics of Aedes mosquito larvae is crucial for the control of Aedes borne viral diseases. This study assessed spatio-temporal abundance and habitat characteristics of Aedes larvae in the Southern Afar Region, Ethiopia. METHODS: Immature mosquitoes were surveyed in Awash Sebat, Awash Arba, and Werer towns of the Southern Afar Region once per month from May 2022 to April 2023. Larvae and pupae surveys were carried out along the available water-holding containers. The collected larvae/pupae were reared to adults and identified by  species/genus morphologically. The physical and chemical properties of the habitats were also characterized. RESULTS: A total of 9099 Aedes larvae/pupae were collected, of which 53.6% (4875) were from Awash Sebat, 29.5% (2687) from Awash Arba and 16.9% (1537) from Werer. Water-holding tyres harboured the highest number of Aedes larvae/pupae followed by water-storage drums. All the Aedes larvae/pupae reared to adults were morphologically identified as Aedes aegypti. The overall Container Index was 47.28%, House Index 18.19%, Breteau Index 59.94% and Pupal Index 171.94. Significant positive relations were observed in the occurrences of Ae. aegypti larvae/pupae with water-holding tyre (AOR = 15.89, CI = 3.55-71.09, p < 0.001), water storage drums (AOR = 19.84, CI = 4.64-84.89, p < 0.001), domestic habitat (AOR = 3.76, CI = 1.27-11.12, p = 0.017), and significant negative relations were observed with Ae. aegypti larvae/pupae occurrence and tap water source (AOR = 0.08, CI = 0.02-0.31, p = 0.001). Ae. aegypti larvae/pupae densities showed positive relations with dissolved oxygen (ß = 0.523, p < 0.001) and total hardness (ß = 0.475, p = 0.034) of water. CONCLUSIONS: Diverse types of artificial water-holding containers were positive for Ae. aegypti larvae/pupae. Ae. aegypti larvae/pupae were abundant in used water-holding tyres, water storage drums, and cement tanks in Awash Sebat, Awash Arba, and Werer towns. This could  put the residents of the towns at high risk of infections with Ae. aegypti transmitted viral diseases such as chikungunya and dengue outbreaks. Thus, we recommend artificial water-holding container management as a strategy to control Ae. aegypti and hence the arboviral diseases transmission.

4.
Parasit Vectors ; 17(1): 344, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154005

ABSTRACT

BACKGROUND: Mosquito-borne diseases, such as malaria, dengue, Zika and chikungunya, pose significant public health threats in tropical and subtropical regions worldwide. To mitigate the impact of these diseases on human health, effective vector surveillance and control strategies are necessary. Traditional vector control methods, which rely on chemical agents such as insecticides and larvicides, face challenges such as resistance and environmental concerns. Consequently, there has been a push to explore novel surveillance and control tools. Mass trapping interventions have emerged as a promising and environmentally friendly approach to reducing the burden of mosquito-borne diseases. This study assessed mass-trapping interventions using autocidal gravid ovitraps (AGOs) on Aedes aegypti populations in Reynosa, Tamaulipas, Mexico. METHODS: Four neighborhoods were selected to evaluate the effects of three treatments: AGO mass-trapping, integrated vector control (IVC), which included source reduction and the application of chemical larvicide and adulticide, and AGO + IVC on Ae. aegypti populations. A control area with no interventions was also included. The effectiveness of the interventions was evaluated by comparing Ae. aegypti abundance between the pre-treatment period (9 weeks) and the post-treatment period (11 weeks) for each treatment. RESULTS: Only treatment using AGO mass trapping with an 84% coverage significantly reduced Ae. aegypti female populations by 47%, from 3.75 ± 0.32 to 1.96 ± 0.15 females/trap/week. As expected, the abundance of Ae. aegypti in the control area did not differ from the pre- and post-treatment period (range of 4.97 ± 0.59 to 5.78 ± 0.53); Ae. aegypti abundance in the IVC treatment was 3.47 ± 0.30 before and 4.13 ± 0.35 after, which was not significantly different. However, Ae. aegypti abundance in the AGO + IVC treatment increased from 1.43 ± 0.21 before to 2.11 ± 0.20 after interventions; this increase may be explained in part by the low AGO (56%) coverage. CONCLUSIONS: This is the first report to our knowledge on the effectiveness of mass-trapping interventions with AGOs in Mexico, establishing AGOs as a potential tool for controlling Ae. aegypti in Northeastern Mexico when deployed with sufficient coverage.


Subject(s)
Aedes , Dengue , Insecticides , Mosquito Control , Mosquito Vectors , Animals , Aedes/physiology , Aedes/drug effects , Mexico , Mosquito Control/methods , Dengue/prevention & control , Dengue/transmission , Insecticides/pharmacology , Female , Humans , Larva
5.
Proc Natl Acad Sci U S A ; 121(35): e2407394121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159375

ABSTRACT

Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.


Subject(s)
Aedes , Feeding Behavior , Humidity , Mosquito Vectors , Oviposition , Animals , Aedes/physiology , Oviposition/physiology , Female , Feeding Behavior/physiology , Mosquito Vectors/physiology , Sensilla/physiology , Receptors, Ionotropic Glutamate/metabolism , Arthropod Antennae/physiology
6.
Sci Rep ; 14(1): 18227, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107395

ABSTRACT

Identification of Aedes aegypti breeding hotspots is essential for the implementation of targeted vector control strategies and thus the prevention of several mosquito-borne diseases worldwide. Training computer vision models on satellite and street view imagery in the municipality of Rio de Janeiro, we analyzed the correlation between the density of common breeding grounds and Aedes aegypti infestation measured by ovitraps on a monthly basis between 2019 and 2022. Our findings emphasized the significance (p ≤ 0.05) of micro-habitat proxies generated through object detection, allowing to explain high spatial variance in urban abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires, plastic bags, potted plants, and storm drains positively correlated with Aedes aegypti egg and larva counts considering a 1000 m mosquito flight range buffer around 2700 ovitrap locations, while dumpsters, small trash bins, and large trash bins exhibited a negative association. This complementary application of satellite and street view imagery opens the pathway for high-resolution interpolation of entomological surveillance data and has the potential to optimize vector control strategies. Consequently it supports the mitigation of emerging infectious diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika, which cause thousands of deaths each year.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/physiology , Mosquito Vectors/physiology , Brazil , Satellite Imagery/methods , Cities , Mosquito Control/methods , Breeding , Ecosystem , Larva/physiology
7.
Article in English | MEDLINE | ID: mdl-39134458

ABSTRACT

Background: Dengue is a mosquito-borne tropical disease, caused by the Dengue virus (DENV). It has become a severe problem and is a rising threat to public health. In this study, we have evaluated commercial Merilisa i Dengue NS1 Antigen kit (Meril LifeSciences India Pvt. Ltd.) to detect recombinant dengue virus 2 NS1 antigen (rDNS1Ag) and secreted forms of NS1 antigen (sDNS1Ag). Methods: To determine the detection limit of the kit, 100 nanogram (ng) to 0.001 ng rDNS1Ag was tested. The sensitivity and specificity of the kit was determined using recombinant NS1 antigens of all serotypes of DENV and other flaviviruses. For testing sDNS1Ag, the culture supernatant of the Vero cell lines infected with DENV-2 was tested. Further, a spiking experiment was carried out to check the sensitivity of the kit to detect rDNS1Ag in the pools of Aedes aegypti mosquitoes. Results: It was observed that the kit can detect the rDNS1Ag at 1 ng concentration. The kit was sensitive to detect NS1 antigen of DENV-1, DENV-2 and DENV-3 serotypes and specific for detection of only DNS1Ag as it did not cross-react with NS1 antigen of flaviviruses. The kit was sensitive to detect rDNS1Ag in the mosquito pools as well. In addition, the kit was able to detect the sDNS1Ag in Vero cell culture supernatant. Conclusions: Overall, we observed that the Merilisa i Dengue NS1 Ag kit is sensitive and specific for the detection of DNS1Ag both in recombinant and secretory forms.

8.
Parasit Vectors ; 17(1): 330, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103931

ABSTRACT

BACKGROUND: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS: We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS: Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS: This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.


Subject(s)
Aedes , Bacteria , Insecticide Resistance , Insecticides , Larva , Nitriles , Pyrethrins , RNA, Ribosomal, 16S , Symbiosis , Animals , Pyrethrins/pharmacology , Nitriles/pharmacology , Aedes/microbiology , Aedes/drug effects , Insecticides/pharmacology , Larva/microbiology , Larva/drug effects , RNA, Ribosomal, 16S/genetics , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Gastrointestinal Microbiome/drug effects , Mosquito Vectors/microbiology , Mosquito Vectors/drug effects , DNA, Ribosomal/genetics , Female , DNA, Bacterial/genetics , Gastrointestinal Tract/microbiology
9.
J Med Entomol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163869

ABSTRACT

Aedes aegypti is fast spreading across California, with over 300 cities within 22 central and southern counties being infested since its introduction in 2013. Due to its cryptic breeding habitats, control efforts have not been successful so far. This calls for innovative tools such as sterile insect technique (SIT) to reinforce the existing integrated pest management (IPM). Here, we assessed fitness, survivorship, and dose response of X-ray irradiated male Ae. aegypti in California. Locally acquired Ae. aegypti eggs were hatched and reared in temperature-controlled laboratory setting at the West Valley Mosquito and Vector Control District in Ontario, California. Freshly emerged adult male mosquitoes were manually separated using motor-operated aspirators and treated with X-ray radiation at different dosage (42-60 Gy). Dose response of irradiated males was analyzed and induced sterility determined. Survivorship of males treated with different X-ray doses was compared. Fecundity of females that mated with irradiated males at different X-ray doses was generally comparable. Overall, induced sterility increased with higher X-ray doses. Nulliparous females that mated with male Ae. aegypti treated with 55-60 Gy laid eggs with over 99% sterility. Non-irradiated male mosquitoes had higher survivorship (mean = 0.78; P = 0.0331) than irradiated mosquitoes (mean range = 0.50-0.65). The competitiveness index of irradiated males decreased with increasing X-ray treatment doses, 1.14 at 55 Gy and 0.49 at 60 Gy, and this difference was significant (P < 0.01). Irradiated males showed high survivorship and competitiveness-key for the anticipated SIT application for the control of invasive Ae. aegypti in California.

10.
Acta Parasitol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164552

ABSTRACT

PURPOSE: Aedes aegypti (L.,1762) is a primary vector of arboviral infections like dengue, yellow fever, Zika. Female mosquitoes are influenced by various physical and chemical cues from host when blood feeding, e.g., they find some individuals with certain blood types or certain conditions more attractive than others. This study determined whether Ae. aegypti shows a preference when offered blood from a patient with diabetes mellitus (DM), an endocrine disorder associated with abnormal glucose metabolism, compared to healthy blood from non-DMs. METHODS: In the dual feeding experiments, forty newly emerged female mosquitoes were provided with two blood feeding systems with blood from a non-diabetic (healthy) and diabetic patient using artificial feeders. Blood from 12 diabetic and 12 non-diabetic patients was matched by ABO blood type (e.g., diabetic type O blood was compared with non-diabetic type O blood). The number of mosquitoes that landed and fed from each membrane was counted every 2 min for thirty minutes. RESULTS: Ae. aegypti species significantly preferred for blood from non-diabetic individuals (50-65% among the different blood type groups) compared to blood from diabetic individuals. Using multiplex allele-specific PCR it was also determined that, Ae. aegypti significantly preferred the O blood group regardless of blood sugar level compared to others. CONCLUSION: Ae. aegypti has less preference for diabetic blood to non-diabetics. Regardless people affected with this condition need to take preventive measures to reduce mosquito bites as they tend to have weaker immune systems and can experience more severe cases of dengue.

11.
Front Immunol ; 15: 1434003, 2024.
Article in English | MEDLINE | ID: mdl-39176079

ABSTRACT

The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.


Subject(s)
Aedes , Dengue Virus , Dengue , Immunity, Innate , Mosquito Vectors , Wolbachia , Aedes/immunology , Aedes/virology , Aedes/microbiology , Wolbachia/physiology , Wolbachia/immunology , Animals , Dengue Virus/immunology , Dengue Virus/physiology , Dengue/immunology , Dengue/transmission , Dengue/virology , Mosquito Vectors/immunology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Host-Pathogen Interactions/immunology , Humans , Signal Transduction/immunology
12.
Prep Biochem Biotechnol ; : 1-7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049774

ABSTRACT

The yellow fever (YF) vaccine is usually produced with egg-based methods, which has limitations, including potential adverse effects and low production yields. Alternatively, producing the vaccine using Vero cells or HEK 293 cells can overcome some of these issues, but these methods are significantly more expensive. In the current study, the YF vaccine candidate 17DD virus was produced in primary chicken embryo fibroblast (CEF) cells. The primary CEF cells isolation from eggs was optimized through a two-step process. In the first step, the important parameters that contribute to the development of the egg embryo, such as egg position, relative humidity (RH), and incubation time are optimized. In second step, primary CEF release parameters namely; trypsin volume and incubation temperature are optimized. Both steps were optimized using statistical methods. Further, the seeding cell density of isolated CEF was also optimized. It was observed that 5 x 104 cells/cm2 gave the highest virus titer of 3.89 million PFU/ml. The 17DD yields achieved in primary CEFs are much higher than egg-based production and it is an economically viable method.

13.
MethodsX ; 13: 102817, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39049926

ABSTRACT

Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.

14.
BMC Infect Dis ; 24(1): 731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054464

ABSTRACT

BACKGROUND: In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two districts in the Savannah region and spread to several other Districts in three regions. Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for Aedes the arboviral vector in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought to determine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. METHODS: The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance to permethrin, deltamethrin and pirimiphos-methyl was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. RESULTS: Among the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedes mosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). CONCLUSION: This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health. Hence there is a need to continue monitoring these vectors to develop an effective control strategy.


Subject(s)
Aedes , Disease Outbreaks , Insecticide Resistance , Insecticides , Mosquito Vectors , Yellow Fever , Animals , Aedes/virology , Aedes/drug effects , Aedes/genetics , Ghana/epidemiology , Insecticide Resistance/genetics , Yellow Fever/transmission , Yellow Fever/epidemiology , Mosquito Vectors/virology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Humans , Insecticides/pharmacology , Female , Yellow fever virus/genetics , Yellow fever virus/drug effects
15.
Article in English | MEDLINE | ID: mdl-39070230

ABSTRACT

Mosquito control, which is not always easily accomplished, is further complicated by the spread of invasive species. This is the case of Aedes koreicus, a mosquito native to East Asia, whose presence has been recorded in several European countries, including Italy. This mosquito found suitable ecological conditions in central Europe in general, and in northern Italy in particular, as shown by the ongoing expansion of its distribution. While basic knowledge on feeding habits of Ae. koreicus have already been acquired, information on its vectorial competence is scarce. Therefore, active monitoring on the presence of this mosquito, and the pre-planning of future control actions, are of paramount importance. Currently, there are no specific guidelines for controlling this mosquito, both in its native regions and in invaded countries. Here we present the first study on the efficacy of a bioinsecticide based on Bacillus thuringiensis on Ae. koreicus larvae, with a comparison with results obtained on the tiger mosquito Aedes albopictus. Our results proved that this bioinsecticide is effective on Ae. koreicus, both dissolved in water and incorporated into MosChito raft, a hydrogel-based matrix that has recently been developed for the delivery of insecticides to other mosquito species and suitable for safe and eco-compatible applications.

16.
Viruses ; 16(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39066334

ABSTRACT

In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.


Subject(s)
Aedes , Mosquito Vectors , Virome , Animals , Aedes/virology , Cameroon , Virome/genetics , Mosquito Vectors/virology , Metagenomics , Phylogeny , Genome, Viral , Arboviruses/genetics , Arboviruses/classification , Arboviruses/isolation & purification
17.
Pest Manag Sci ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072896

ABSTRACT

BACKGROUND: The incompatible insect technique (IIT) has been used for Aedes mosquito population suppression to curb the transmission of dengue. However, its wide application is limited owing to the low output of male mosquitoes and the risk of population replacement from the release of fertile Wolbachia-infected females. This study aims to improve IIT efficiency for broader adoption. RESULTS: We assessed the impact of 10% pyriproxyfen (PPF) sticky powder exposure on Wolbachia (from Culex molestus)-transinfected Aedes albopictus Guangzhou line (GUA line) (GC) mosquitoes. We found that the exposure caused chronic toxicity in adult mosquitoes without affecting the cytoplasmic incompatibility (CI)-inducing capability of males. The PPF-contaminated GC females exhibited significant sterilization and the ability to disseminate lethal doses of PPF to breeding sites. Subsequently, we conducted a field trial combining PPF with IIT aiming to suppress the Ae. albopictus population. This combined approach, termed boosted IIT (BIIT), showed a notable enhancement in population suppression efficiency. The improved efficacy of BIIT was attributed to the dispersion of PPF particles in the field via the released PPF-contaminated male mosquitoes. During the BIIT field trial, no Wolbachia wPip-positive Ae. albopictus larvae were detected, indicating the effective elimination of the risk of Wolbachia-induced population replacement. Additionally, the field trial of BIIT against Ae. albopictus resulted in the suppression of the nontarget mosquito species Culex quinquefasciatus. CONCLUSION: Our results highlight the remarkable efficiency and feasibility of combining IIT with PPF in suppressing mosquito populations, facilitating the widespread implementation of IIT-based management of mosquito-borne diseases. © 2024 Society of Chemical Industry.

18.
Pest Manag Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38993039

ABSTRACT

BACKGROUND: This study investigated the behavioral responses and toxicity of three basic amines: 1-methylpiperazine, 1-methylpyrrolidine, and triethylamine (TEA), compounds suggested previously to be anosmic in vapor exposures to caged mosquitoes. RESULTS: These compounds showed repellency of Aedes aegypti mosquitoes, followed by flightlessness, knockdown, and paralysis, all increasing with exposure time and dosage. Electrophysiological experiments showed a blocking effect on nerve discharge of the Drosophila melanogaster larval central nervous system (CNS) with little evidence of hyperexcitation. Blockage of voltage-gated (Kv2) potassium channel currents under patch clamp occurred at similar concentrations. Involvement of K+ channels in the action of basic amines was supported by behavior and CNS recordings of a Shaker Kv1 mutant exposed to TEA, where instead of blockage, a hyperexcitation of nerve firing was observed. Experiments on cockroach leg mechanoreceptors demonstrated neuronal excitation and on mosquito antennae strong electroantennogram (EAG) signals with an augmentation of blank air responses after a single puff of basic amine. CONCLUSIONS: The neurophysiological effects of basic amines are consistent with K+ channel block, whereas the antennal EAG response was not obviously associated with anosmia. The low-dose effects of basic amines appear to be repellency and bradykinesia. Overall, the findings provide key insights into the mechanisms underlying the biological activity of basic amines. © 2024 Society of Chemical Industry.

19.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957696

ABSTRACT

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

20.
Microsc Res Tech ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034539

ABSTRACT

Dengue fever poses a global public health threat, with 2.5 billion people at risk of infection each year. Because the Aedes albopictus is the primary vector of dengue, it is closely monitored and handled. The efficiency of Dengue eradication is strongly dependent on understanding a female mosquito's physiological age. This study addresses key entomological issues about the impact of previtellogenic nutrition on egg production mechanisms. Ovarian development included two distinct periods: previtellogenesis and vitellogenesis. Sugar intake during previtellogenesis influences the size of the blood meal. The major parameter influencing the vitellogenesis process is the presence of a hematophagous feeding event following sugar concentration. Upon subjecting female mosquitoes to sucrose, the ovarian follicles entered the third phase of previtellogenesis. Once females feed on blood following sucrose, ovarian development enters the vitellogenesis, and the oocyte cytoplasm reveals that the yolk granules are organized in one or two rows like a crown, increasing oocyte size. Females fed 15% sucrose before a blood meal, have the largest vitellogenic growth, and follicular size, which is seven times greater than those fed water only. Fecundity increased by 78.7% by adding 7% sucrose to the diet. Mitochondria within oocytes increase, most likely due to their transportation from the nurse cells, where the yolk is synthesized. This study describes in detail the histological alterations detected in the ovaries during the previtellogenesis as well as those associated with yolk formation, suggesting that yolk protein deposition in the oocyte is associated with blood meal, independent of sucrose feeding. RESEARCH HIGHLIGHTS: Adult nutrition during previtellogenesis significantly impacts various biological parameters and the physiological age of adults of Aedes albopictus. Female mosquitoes experienced significant growth in vitellogenic development, vectorial capacity, and follicular size after consuming a diet with 15% sucrose before a blood meal.

SELECTION OF CITATIONS
SEARCH DETAIL