Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.808
Filter
1.
Parasit Vectors ; 17(1): 330, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103931

ABSTRACT

BACKGROUND: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes' metabolic resistance against insecticides. METHODS: We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS: Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS: This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies.


Subject(s)
Aedes , Bacteria , Insecticide Resistance , Insecticides , Larva , Nitriles , Pyrethrins , RNA, Ribosomal, 16S , Symbiosis , Animals , Pyrethrins/pharmacology , Nitriles/pharmacology , Aedes/microbiology , Aedes/drug effects , Insecticides/pharmacology , Larva/microbiology , Larva/drug effects , RNA, Ribosomal, 16S/genetics , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Gastrointestinal Microbiome/drug effects , Mosquito Vectors/microbiology , Mosquito Vectors/drug effects , DNA, Ribosomal/genetics , Female , DNA, Bacterial/genetics , Gastrointestinal Tract/microbiology
2.
Article in English | MEDLINE | ID: mdl-39134458

ABSTRACT

Background: Dengue is a mosquito-borne tropical disease, caused by the Dengue virus (DENV). It has become a severe problem and is a rising threat to public health. In this study, we have evaluated commercial Merilisa i Dengue NS1 Antigen kit (Meril LifeSciences India Pvt. Ltd.) to detect recombinant dengue virus 2 NS1 antigen (rDNS1Ag) and secreted forms of NS1 antigen (sDNS1Ag). Methods: To determine the detection limit of the kit, 100 nanogram (ng) to 0.001 ng rDNS1Ag was tested. The sensitivity and specificity of the kit was determined using recombinant NS1 antigens of all serotypes of DENV and other flaviviruses. For testing sDNS1Ag, the culture supernatant of the Vero cell lines infected with DENV-2 was tested. Further, a spiking experiment was carried out to check the sensitivity of the kit to detect rDNS1Ag in the pools of Aedes aegypti mosquitoes. Results: It was observed that the kit can detect the rDNS1Ag at 1 ng concentration. The kit was sensitive to detect NS1 antigen of DENV-1, DENV-2 and DENV-3 serotypes and specific for detection of only DNS1Ag as it did not cross-react with NS1 antigen of flaviviruses. The kit was sensitive to detect rDNS1Ag in the mosquito pools as well. In addition, the kit was able to detect the sDNS1Ag in Vero cell culture supernatant. Conclusions: Overall, we observed that the Merilisa i Dengue NS1 Ag kit is sensitive and specific for the detection of DNS1Ag both in recombinant and secretory forms.

3.
Sci Rep ; 14(1): 18227, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107395

ABSTRACT

Identification of Aedes aegypti breeding hotspots is essential for the implementation of targeted vector control strategies and thus the prevention of several mosquito-borne diseases worldwide. Training computer vision models on satellite and street view imagery in the municipality of Rio de Janeiro, we analyzed the correlation between the density of common breeding grounds and Aedes aegypti infestation measured by ovitraps on a monthly basis between 2019 and 2022. Our findings emphasized the significance (p ≤ 0.05) of micro-habitat proxies generated through object detection, allowing to explain high spatial variance in urban abundance of Aedes aegypti immatures. Water tanks, non-mounted car tires, plastic bags, potted plants, and storm drains positively correlated with Aedes aegypti egg and larva counts considering a 1000 m mosquito flight range buffer around 2700 ovitrap locations, while dumpsters, small trash bins, and large trash bins exhibited a negative association. This complementary application of satellite and street view imagery opens the pathway for high-resolution interpolation of entomological surveillance data and has the potential to optimize vector control strategies. Consequently it supports the mitigation of emerging infectious diseases transmitted by Aedes aegypti, such as dengue, chikungunya, and Zika, which cause thousands of deaths each year.


Subject(s)
Aedes , Mosquito Vectors , Animals , Aedes/physiology , Mosquito Vectors/physiology , Brazil , Satellite Imagery/methods , Cities , Mosquito Control/methods , Breeding , Ecosystem , Larva/physiology
4.
J Med Entomol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096529

ABSTRACT

Discarded vehicle tires serve as habitat for mosquito vectors. In New Orleans, Louisiana, discarded tires are an increasingly important public concern, especially considering that the city is home to many medically important mosquito species. Discarded tires are known to be associated with mosquito abundance, but how their presence interacts with other socioenvironmental gradients to influence mosquito ecology is poorly understood. Here, we ask whether discarded tire distribution could be explained by social factors, particularly median income, home vacancy and human population density, and whether these factors interact with urban heat islands (UHI) to drive mosquito vector assemblages. We surveyed tire piles across the city and adult mosquitoes in 12 sites, between May and October of 2020. We compared this data with the social indicators selected and UHI estimates. Our results show that median income and human population density were inversely related to tire abundance. Tire abundance was positively associated with Aedes albopictus abundance in places of low heat (LS) severity. Heat was the only predictor for the other monitored species, where high heat corresponded to higher abundance of Aedes aegypti, and LS to higher abundance of Culex quinquefasciatus. Our results suggest that low-income, sparsely populated neighborhoods of New Orleans may be hotspots for discarded vehicle tires, and are associated with higher abundances of at least one medically important mosquito (Ae. albopictus). These findings suggest potential locations for prioritizing source reduction efforts to control mosquito vectors and highlight discarded tires as a potential exposure pathway to unequal disease risk for low-income residents.

5.
BMC Public Health ; 24(1): 2096, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095794

ABSTRACT

BACKGROUND: To assess whether the 'economic boom' in the tropical seaport city of Barranquilla improved tapped water supplies to socio-economically poor neighbourhoods resulting in: (1) their reduced use for domestic water-storage in large (> 1,000-litre) custom-made cement tanks which are their principal Aedes aegypti breeding sites and (2) their pupae/person index (PPI) values to below their established 0.5-1.5 PPI arbovirus transmission-threshold value, compared to matched neighbourhoods in the: (a) pre-economic boom (2004) period in Barranquilla and (b) economically-neglected seaport city of Buenaventura. METHODS: The simple, accurate and robust water surface sweep-net/calibration factor or total count methods were used to determine the total Ae. aegypti pupae numbers in greater or less than 20-litre water-holding container types located 'inside' or 'outside' these neighbourhood premises. The women residents also participated in questionnaire-based responses about their domestic water supplies, water-storage and maintenance and mosquito life stages and disease transmission knowledge, to subsequently plan appropriate resident education programmes. Microsoft Excel 8.0 with OpenEpi was used to determine the samples sizes and the statistical values. RESULTS: Tapped water supplies to the three poor Barranquilla neighbourhoods were dramatically increased from 2004 to 2023 resulting in their residents significantly reducing their: (a) large cement water-storage tanks from 1 per 6.9 (2004) to 1 per 31.2 (2020) premises (z = 10.5: p = 0) and (b) PPI values to 0.16, 0.19 and 0.53 (mean: 0.29: 95% CI ± 0.4) in each study neighbourhood. In contrast, tapped water supplies remained inadequate in the Buenaventura neighborhoods, thereby resulting in their continued use of many large (> 1,000-litre) water-storage containers (Barranquilla: 1 per 31.2 and Buenaventura: 1 per 1.5 premises: z = - 9.26: p = 0), with unacceptably high 0.81, 0.88 and 0.99 PPI values in each study neighbourhood (mean 0.89: 95% CI ± 0.12). CONCLUSIONS: Improved tapped water supplies resulted in reduced numbers of large custom-made stoneware water-containers, as are employed by poor residents throughout the world, as well as their Ae. aegypti PPI transmission threshold values which, together with appropriate residents' education programmes, are also urgently to reduce to prevent/reduce Ae. aegypti transmitted human diseases globally.


Subject(s)
Aedes , Water Supply , Animals , Humans , Female , Mosquito Vectors , Arbovirus Infections/transmission , Pupa , Dengue/transmission , Mosquito Control/methods , Colombia , Adult , Residence Characteristics/statistics & numerical data
6.
Trop Med Health ; 52(1): 51, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095931

ABSTRACT

BACKGROUND: Describing spatio-temporal occurrence and habitat characteristics of Aedes mosquito larvae is crucial for the control of Aedes borne viral diseases. This study assessed spatio-temporal abundance and habitat characteristics of Aedes larvae in the Southern Afar Region, Ethiopia. METHODS: Immature mosquitoes were surveyed in Awash Sebat, Awash Arba, and Werer towns of the Southern Afar Region once per month from May 2022 to April 2023. Larvae and pupae surveys were carried out along the available water-holding containers. The collected larvae/pupae were reared to adults and identified by  species/genus morphologically. The physical and chemical properties of the habitats were also characterized. RESULTS: A total of 9099 Aedes larvae/pupae were collected, of which 53.6% (4875) were from Awash Sebat, 29.5% (2687) from Awash Arba and 16.9% (1537) from Werer. Water-holding tyres harboured the highest number of Aedes larvae/pupae followed by water-storage drums. All the Aedes larvae/pupae reared to adults were morphologically identified as Aedes aegypti. The overall Container Index was 47.28%, House Index 18.19%, Breteau Index 59.94% and Pupal Index 171.94. Significant positive relations were observed in the occurrences of Ae. aegypti larvae/pupae with water-holding tyre (AOR = 15.89, CI = 3.55-71.09, p < 0.001), water storage drums (AOR = 19.84, CI = 4.64-84.89, p < 0.001), domestic habitat (AOR = 3.76, CI = 1.27-11.12, p = 0.017), and significant negative relations were observed with Ae. aegypti larvae/pupae occurrence and tap water source (AOR = 0.08, CI = 0.02-0.31, p = 0.001). Ae. aegypti larvae/pupae densities showed positive relations with dissolved oxygen (ß = 0.523, p < 0.001) and total hardness (ß = 0.475, p = 0.034) of water. CONCLUSIONS: Diverse types of artificial water-holding containers were positive for Ae. aegypti larvae/pupae. Ae. aegypti larvae/pupae were abundant in used water-holding tyres, water storage drums, and cement tanks in Awash Sebat, Awash Arba, and Werer towns. This could  put the residents of the towns at high risk of infections with Ae. aegypti transmitted viral diseases such as chikungunya and dengue outbreaks. Thus, we recommend artificial water-holding container management as a strategy to control Ae. aegypti and hence the arboviral diseases transmission.

7.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957696

ABSTRACT

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

8.
Article in English | MEDLINE | ID: mdl-38978497

ABSTRACT

The black saltmarsh mosquito, Aedes taeniorhynchus, is a prominent nuisance mosquito within St. Johns County, Florida. Due to their characteristically large outbreaks, and the elevated amount of insecticide application correlated with the outbreaks, local populations of Ae. taeniorhynchus are at an increased risk of developing insecticide resistance. This study was established to form a baseline susceptibility of Ae. taeniorhynchus against two technical grade materials, permethrin, and chlorpyrifos. Centers for Disease Control and Prevention bottle bioassays were conducted with technical-grade materials during two outbreaks in the fall of 2023. Results indicated a baseline susceptibility against the materials tested, but most notably, the phenotypic expression of knockdown resistance (kdr) was observed. Results highlight the need for continued monitoring and investigation into the resistance status and resistance level of this common Florida species.

9.
Med Vet Entomol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980066

ABSTRACT

Globalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over. These mosquitoes continue to emerge in new areas where they have or will have overlapping ranges with other resident mosquito species. The study investigates how invasive Aedes mosquitoes compete with the native Culex pipiens in Türkiye, which might affect the overall mosquito population dynamics and disease transmission risks. Both Aedes species exhibited contrasting responses to interspecific competition with Cx. pipiens. While Ae. albopictus suffers reduced emergence primarily in larger containers with abundant food, Ae. aegypti surprisingly thrives in mixed cultures under all food conditions. Adult Cx. pipiens emergence drops by half against Ae. albopictus and under specific conditions with Ae. aegypti. Competition influences mosquito size differently across species and life stages. Culex pipiens females grow larger when competing with Ae. aegypti, potentially indicating resource advantage or compensatory strategies. However, Ae. albopictus size shows more nuanced responses, suggesting complex interactions at play. Understanding how invasive and native mosquitoes interact with each other can provide insights into how they adapt and coexist in shared habitats. This knowledge can inform effective control strategies. The study highlights the differential responses of invasive Aedes species and the potential for managing populations based on their competitive interactions with the native Cx. pipiens. It can contribute to improved monitoring and prediction systems for the spread of invasive mosquitoes and the associated disease risks.

10.
Pest Manag Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38993039

ABSTRACT

BACKGROUND: This study investigated the behavioral responses and toxicity of three basic amines: 1-methylpiperazine, 1-methylpyrrolidine, and triethylamine (TEA), compounds suggested previously to be anosmic in vapor exposures to caged mosquitoes. RESULTS: These compounds showed repellency of Aedes aegypti mosquitoes, followed by flightlessness, knockdown, and paralysis, all increasing with exposure time and dosage. Electrophysiological experiments showed a blocking effect on nerve discharge of the Drosophila melanogaster larval central nervous system (CNS) with little evidence of hyperexcitation. Blockage of voltage-gated (Kv2) potassium channel currents under patch clamp occurred at similar concentrations. Involvement of K+ channels in the action of basic amines was supported by behavior and CNS recordings of a Shaker Kv1 mutant exposed to TEA, where instead of blockage, a hyperexcitation of nerve firing was observed. Experiments on cockroach leg mechanoreceptors demonstrated neuronal excitation and on mosquito antennae strong electroantennogram (EAG) signals with an augmentation of blank air responses after a single puff of basic amine. CONCLUSIONS: The neurophysiological effects of basic amines are consistent with K+ channel block, whereas the antennal EAG response was not obviously associated with anosmia. The low-dose effects of basic amines appear to be repellency and bradykinesia. Overall, the findings provide key insights into the mechanisms underlying the biological activity of basic amines. © 2024 Society of Chemical Industry.

11.
Risk Anal ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987233

ABSTRACT

Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.

12.
Int J Health Geogr ; 23(1): 18, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972982

ABSTRACT

BACKGROUND: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.


Subject(s)
Aedes , Cities , Satellite Imagery , Animals , Satellite Imagery/methods , Mosquito Vectors , French Guiana/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue/prevention & control , Humans , Breeding/methods
14.
Microsc Res Tech ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034539

ABSTRACT

Dengue fever poses a global public health threat, with 2.5 billion people at risk of infection each year. Because the Aedes albopictus is the primary vector of dengue, it is closely monitored and handled. The efficiency of Dengue eradication is strongly dependent on understanding a female mosquito's physiological age. This study addresses key entomological issues about the impact of previtellogenic nutrition on egg production mechanisms. Ovarian development included two distinct periods: previtellogenesis and vitellogenesis. Sugar intake during previtellogenesis influences the size of the blood meal. The major parameter influencing the vitellogenesis process is the presence of a hematophagous feeding event following sugar concentration. Upon subjecting female mosquitoes to sucrose, the ovarian follicles entered the third phase of previtellogenesis. Once females feed on blood following sucrose, ovarian development enters the vitellogenesis, and the oocyte cytoplasm reveals that the yolk granules are organized in one or two rows like a crown, increasing oocyte size. Females fed 15% sucrose before a blood meal, have the largest vitellogenic growth, and follicular size, which is seven times greater than those fed water only. Fecundity increased by 78.7% by adding 7% sucrose to the diet. Mitochondria within oocytes increase, most likely due to their transportation from the nurse cells, where the yolk is synthesized. This study describes in detail the histological alterations detected in the ovaries during the previtellogenesis as well as those associated with yolk formation, suggesting that yolk protein deposition in the oocyte is associated with blood meal, independent of sucrose feeding. RESEARCH HIGHLIGHTS: Adult nutrition during previtellogenesis significantly impacts various biological parameters and the physiological age of adults of Aedes albopictus. Female mosquitoes experienced significant growth in vitellogenic development, vectorial capacity, and follicular size after consuming a diet with 15% sucrose before a blood meal.

15.
J Anim Ecol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39030760

ABSTRACT

Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.

16.
Clin Rheumatol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031292

ABSTRACT

BACKGROUND: Chikungunya fever (CF) is a viral disease, transmitted by alphavirus through Aedes aegypti, and albopictus mosquitoes, affecting several people, mainly in tropical countries, when its transmitter is not under control, and the main symptom of the chronic phase of CF is joint pain. OBJECTIVES: The primary objective of this study was to observe the prevalence, most affected joints, and intensity of chronic joint pain in individuals affected by CF, and also identify the factors associated with chronic joint pain in these individuals. METHODS: Cross-sectional study that evaluated one hundred and thirty volunteers, of both sexes, aged between 20-65 years, with a clinical and/or laboratory diagnosis of CF. The presence of joint pain was investigated using the Brazilian version of the Nordic Questionnaire of Musculoskeletal Symptoms and the intensity of pain using the Visual Analogue Scale. RESULTS: Of the 130 volunteers evaluated, n = 112 (86%) reported currently experiencing chronic joint pain, persistent, for approximately 38.6 ± 1.73 months, with the greatest predominance in the morning (58%). The joints most affected by pain were: the ankles (65.5%), interphalangeal joints of the hands (59.2%), and knees (59.2%). The joints that presented the greatest intensity of pain were: the ankles (5.13 ± 0.34), interphalangeal joints of the hands (4.63 ± 0.34), and knees (4.33 ± 0.33). Sedentary behavior (p = 0.037), increasing age (p = 0.000), and overweight/obesity (p = 0.002) were factors associated with chronic joint pain. CONCLUSION: A high prevalence of chronic, persistent joint pain was observed, with a greater prevalence in the morning. The joints most affected by chronic pain and with the greatest pain intensity were the ankles, and interphalangeal joints of the hands and knees. Sedentary behavior, increasing age, and overweight/obesity were the factors associated with chronic joint pain in individuals affected by CF in this study. Key Points • Individuals affected by CF had a high prevalence of chronic joint pain, persistent and more prevalent in the mornings • The ankles and interphalangeal joints of the hands and knees were the joints with the highest prevalence of pain • The ankles and interphalangeal joints of the hands and knees were the joints with the greatest pain intensity • Sedentary behavior, increasing age, and overweight/obesity were factors associated with chronic joint pain in individuals affected by CF.

17.
Pest Manag Sci ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031863

ABSTRACT

BACKGROUND: Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release. Here, we present the results of semi-field experiments comparing the impact of minimal female co-release on two IIT modes: unidirectional CI-based (UnCI IIT) and bidirectional CI-based (BiCI IIT), specifically targeting Ae. albopictus. RESULTS: The contamination of 'wPip' infected females (2%) during male releases significantly weakened the overall effectiveness of IIT, emphasizing the need for thorough sex separation. Specifically, with UnCI IIT, despite the low rate of co-released females, there was a gradual rise in 'wPip' infection frequency, resulting in more compatible mating and subsequently higher rates of egg hatching. Conversely, this pattern was effectively mitigated in BiCI IIT owing to the reciprocal sterility between the wild-type and the 'wPip' infected populations. CONCLUSION: Through an experimental approach, conducted in a semi-field setting, we have contributed to advancing scientific understanding regarding the potential outcomes of implementing the IIT strategy in the absence of a complete sexing system. The results suggest that safety measures for mitigating the potential impacts of co-released females can be tailored according to the specific type of IIT being utilized. © 2024 Society of Chemical Industry.

19.
Viruses ; 16(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39066334

ABSTRACT

In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.


Subject(s)
Aedes , Mosquito Vectors , Virome , Animals , Aedes/virology , Cameroon , Virome/genetics , Mosquito Vectors/virology , Metagenomics , Phylogeny , Genome, Viral , Arboviruses/genetics , Arboviruses/classification , Arboviruses/isolation & purification
20.
Prep Biochem Biotechnol ; : 1-7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049774

ABSTRACT

The yellow fever (YF) vaccine is usually produced with egg-based methods, which has limitations, including potential adverse effects and low production yields. Alternatively, producing the vaccine using Vero cells or HEK 293 cells can overcome some of these issues, but these methods are significantly more expensive. In the current study, the YF vaccine candidate 17DD virus was produced in primary chicken embryo fibroblast (CEF) cells. The primary CEF cells isolation from eggs was optimized through a two-step process. In the first step, the important parameters that contribute to the development of the egg embryo, such as egg position, relative humidity (RH), and incubation time are optimized. In second step, primary CEF release parameters namely; trypsin volume and incubation temperature are optimized. Both steps were optimized using statistical methods. Further, the seeding cell density of isolated CEF was also optimized. It was observed that 5 x 104 cells/cm2 gave the highest virus titer of 3.89 million PFU/ml. The 17DD yields achieved in primary CEFs are much higher than egg-based production and it is an economically viable method.

SELECTION OF CITATIONS
SEARCH DETAIL