Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(11): e32281, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961912

ABSTRACT

We report the fabrication of two terminal and three terminal gas sensor using Al-doped ZnO nanostructured-films and polymer electrolyte gate dielectric on glass substrate using vacuum free chemical method. The Al doped ZnO films are characterized by UV-vis Spectrometer, SEM, EDX and XRD. The characterization results have revealed the polycrystalline structure of both undoped and doped ZnO; with loosely packed, porous, and spherical granny nanostructure with mean grain size 20-10 nm and bandgap of the films is within the range of 3.12-3.16 eV. The conductivity of the ZnO film is tuned by Al concentration and the maximum value of conductivity was observed in 3 % Al doped ZnO films. Similarly, the best performance index of TFT such as current ON/OFF ratio, high transconductance and low threshold voltage was observed in 3 % Al doping concentration. The ordinary (two-terminal) sensor and three-terminal (FET) sensors' responses towards three different concentrations 50, 250, 500 ppm of ethanol and methanol vapors have been studied. The sensitivity of the film is modulated by Al concentration and higher value of sensitivity was achieved at 3 % Al doped ZnO films. The use of polymer electrolyte enhanced the sensitivity of the device which is more effective in methanol vapor. The Response-Recovery time of the sensor is significantly improved in three terminal devices than the two terminal devices.

2.
Angew Chem Int Ed Engl ; 63(30): e202405807, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38757228

ABSTRACT

Artificial photosynthesis of fuels has garnered significant attention, with SrTiO3 emerging as a potential candidate for photocatalysis due to its exceptional physicochemical properties. However, selectively converting CO2 into fuels with desired reaction products remains a grand challenge. Herein, we design an updated method via an aging strategy based on the electrospinning technique to synthesize a single-crystalline Al-doped SrTiO3 nanotubular networks with self-assembled orderly mesopores, further modified by Cu-Pd alloy. It exhibits both high crystallinity and superior cross-linked mesoporous structures, effectively facilitating charge carrier transfer, photon utilization, and mass transfer, with a remarkable enhancement from 0.025 mmol h-1 m-2 to 1.090 mmol h-1 m-2 in the CO production rate. Meanwhile, the ordered arrangement of Cu and Pd atoms on the (111) surface can promote the rate-determining step (*CO2 to *COOH), which is also responsible for its good activity. The presence of CuO in the reaction confers a significant advantage for CO desorption, leading to a remarkable CO selectivity of 95.54 %. This work highlights new insights into developing advanced heterogeneous photocatalysts.

3.
J Mol Model ; 30(1): 21, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38170322

ABSTRACT

CONTEXT: The hydrogen cyanide (HCN) hydrolysis reaction mechanism over Al-doped graphene was investigated through the density functional theory method. HCN preferentially adsorbed vertically on the Al top site to form a stable adsorption configuration. H2O preferentially adsorbed parallel on the Al top site to form a stable adsorption configuration. The competitive adsorption of HCN and H2O weakened the adsorption stability of each molecule over Al-doped graphene. The break of C-N and H-O bonds was the key process in the preferential fracture pathway of the C-H bond. The break of C-N and C-H bonds was the key process in the preferential fracture pathway of the H-O bond. HCN played the role of bridge in the joint adsorption process. H atom transfer and C-N bond cleavage promoted the generation of CO and NH3. The change in the order of H atom transfer determined the reaction energy barrier. NH2CHO was more likely to act as an intermediate to promote the hydrolysis process. METHODS: The calculation work was achieved from the Dmol3 program in Material Studio 2017 using the GGA/PBE method with DNP basis, including the geometric structure and reaction pathway optimization, and adsorption energy calculation. All calculations were performed using a spin-polarized set and the TS method was used for DFT-D correction.

4.
Adv Mater ; 36(14): e2310657, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193844

ABSTRACT

Extracting lithium selectively and efficiently from brine sources is crucial for addressing energy and environmental challenges. The electrochemical system employing LiMn2O4 (LMO) electrodes has been recognized as an effective method for lithium recovery. However, the lithium selectivity and stability of LMO need further enhancement for its practical applications. Herein, the Al-doped LMO with reduced lattice constant is successfully fabricated through a facile one-step solid-state sintering method, leading to enhanced lithium selectivity. The reduced lattice constant in Al-doped LMO is proved through spectroscopic analyses and theoretic calculations. Compared to the original LMO, the Al-doped LMO (LiAl0.05Mn1.95O4, LMO-Al0.05) exhibits highercapacitance, lower resistance, and improved stability. Moreover, the LMO-Al0.05 with reduced lattice constant can offer higher Li+ diffusion coefficient and lower intercalation energy revealed by cyclic voltammetry and multiscale simulations. When employed in hybrid capacitive deionization (CDI), the LMO-Al0.05 obtains a Li+ intercalation capacity of 21.7 mg g-1 and low energy consumption of 2.6 Wh mol-1 Li+. Importantly, the LMO-Al0.05 achieves a high Li+ extraction percentage (≈86%) with Li+/Na+ and Li+/Mg2+ selectivity of 1653.8 and 434.9, respectively, in synthetic brine. The results demonstrate that the Al-doped LMO with reduced lattice constant could be a sustainable solution for electrochemical lithium extraction.

5.
Small ; : e2308451, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059738

ABSTRACT

Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3 I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3 I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2 O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2 ) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3 I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1 , respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3 I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3 I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.

6.
ACS Appl Mater Interfaces ; 15(51): 59475-59481, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38105603

ABSTRACT

Large quantities of spent lithium-ion batteries (LIBs) will inevitably be generated in the near future because of their wide application in many fields. It will cause not only resource waste but also environmental pollution if these spent batteries are not properly handled. Until now, the recycling of spent lithium manganate batteries has centered on high-valuable elements such as lithium; however, manganese element and current collector Al foil have not yet attracted wide attention. In this work, aluminum-doped manganese dioxide was synthesized by overall recycling cathode active materials and current collector Al foil from a spent lithium manganate battery. Employing such aluminum-doped manganese dioxide as the cathode material of aqueous Zn batteries, it displays better electrochemical performance than manganese dioxide prepared by only recycling the cathode active materials. The overall recycling not only simplifies the recycling process but also realizes high-value recycling of spent lithium manganate batteries. We offer new tactics for overall recycling of cathodes from spent LIBs and designing high-performance manganese dioxide cathodes for aqueous Zn batteries.

7.
ACS Appl Mater Interfaces ; 15(38): 44867-44875, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37700502

ABSTRACT

Natrium superionic conductor (NASICON) is a promising solid-state electrolyte because of its high stability under air as well as its safety. Doping is an effective way to improve its ionic conductivity, but there is limited information about the explanation of the doping sites. In this work, Al-doped NASICONs are designed. When Al doping is 0.3 (NAl0.3ZSP), the ionic conductivity is the highest and is 5.08 × 10-5 S cm-1 at 30 °C, which is 3.3 times that of undoped NASICON. NAl0.3ZSP consists of a NASICON structure (monoclinic and rhombohedral phases), an amorphous glassy phase, and Na3PO4 impurities. After Al doping, more Si/P sites are occupied by Al; thus, the ratio of Na3PO4 impurities increases. Na3PO4 at the grain boundary is beneficial for grain boundary resistance decrease, contributing to the decrease of the total resistance. Our work first provides a detailed explanation of doped-Al sites and interprets their effects on ionic conductivity.

8.
J Mol Model ; 29(9): 289, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612447

ABSTRACT

CONTEXT: The co-adsorption of sulfate and metal ions on intrinsic and Al-doped graphene is investigated through first principles calculations. When SO42- ions exist only, both of intrinsic and Al-doped graphene can form stable adsorption configurations with SO42-. However, the presence of Cu2+/Ca2+/Zn2+/Mg2+ ions attenuates the interaction between intrinsic graphene and SO42-, resulting in weak physical adsorption between them, while Al-doped graphene can still constitute co-adsorption chemically with both SO42- and Cu2+/Ca2+/Zn2+/Mg2+ ions simultaneously. The sensitivity of Al-doped graphene towards co-adsorbed ions is in the order of SO42--Cu2+ > SO42--Zn2+ > SO42--Ca2+ > SO42--Mg2+. The research indicates Al-doped graphene could be a promising material for sensing sulfate ions under the presence of various metal ions. METHODS: All of the calculations were carried out by using a first principles method based on density functional theory (DFT). The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was selected to describe electron exchange-correlation energy. The double numerical plus polarization (DNP) was employed as the basis set. The conductor-like screening model (COSMO) was implemented to simulate the aqueous solvent effect.

9.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37512647

ABSTRACT

Herein, we successfully fabricated an Al-doped α-Ga2O3 nanorod array on FTO using the hydrothermal and post-annealing processes. To the best of our knowledge, it is the first time that an Al-doped α-Ga2O3 nanorod array on FTO has been realized via a much simpler and cheaper way than that based on metal-organic chemical vapor deposition, magnetron sputtering, molecular beam epitaxy, and pulsed laser deposition. And, a self-powered Al-doped α-Ga2O3 nanorod array/FTO photodetector was also realized as a photoanode at 0 V (vs. Ag/AgCl) in a photoelectrochemical (PEC) cell, showing a peak responsivity of 1.46 mA/W at 260 nm. The response speed of the Al-doped device was 0.421 s for rise time, and 0.139 s for decay time under solar-blind UV (260 nm) illumination. Compared with the undoped device, the responsivity of the Al-doped device was ~5.84 times larger, and the response speed was relatively faster. When increasing the biases from 0 V to 1 V, the responsivity, quantum efficiency, and detectivity of the Al-doped device were enhanced from 1.46 mA/W to 2.02 mA/W, from ~0.7% to ~0.96%, and from ~6 × 109 Jones to ~1 × 1010 Jones, respectively, due to the enlarged depletion region. Therefore, Al doping may provide a route to enhance the self-powered photodetection performance of α-Ga2O3 nanorod arrays.

10.
ACS Appl Mater Interfaces ; 15(28): 33654-33664, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37429817

ABSTRACT

Selective deoxygenation of chemicals using non-noble metal-based catalysts poses a significant challenge toward upgrading biomass-derived oxygenates into advanced fuels and fine chemicals. Herein, we report a bifunctional core-shell catalyst (Ni@Al3-mSiO2) consisting of Ni nanoparticles closely encapsulated by the Al-doped mesoporous silica shell that achieves 100% vanillin conversion and >99% yield of 2-methoxy-4-methylphenol under 1 MPa H2 at 130 °C in water. Due to the unique mesoporous core-shell structure, no significant decrease in catalytic activity was observed after 10 recycles. Furthermore, incorporating Al atoms into the silica shell significantly increased the number of acidic sites. Density functional theory calculations reveal the reaction pathway of the vanillin hydrodeoxygenation process and uncover the intrinsic influence of the Al sites. This work not only provides an efficient and cost-effective bifunctional hydrodeoxygenation catalyst but also offers a new synthetic protocol to rationally design promising non-noble metal catalysts for biomass valorization or other widespread applications.

11.
Nanomaterials (Basel) ; 13(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299668

ABSTRACT

Concurrently achieving high energy storage density (ESD) and efficiency has always been a big challenge for electrostatic energy storage capacitors. In this study, we successfully fabricate high-performance energy storage capacitors by using antiferroelectric (AFE) Al-doped Hf0.25Zr0.75O2 (HfZrO:Al) dielectrics together with an ultrathin (1 nm) Hf0.5Zr0.5O2 underlying layer. By optimizing the Al concentration in the AFE layer with the help of accurate controllability of the atomic layer deposition technique, an ultrahigh ESD of 81.4 J cm-3 and a perfect energy storage efficiency (ESE) of 82.9% are simultaneously achieved for the first time in the case of the Al/(Hf + Zr) ratio of 1/16. Meanwhile, both the ESD and ESE exhibit excellent electric field cycling endurance within 109 cycles under 5~5.5 MV cm-1, and robust thermal stability up to 200 °C. Thus, the fabricated capacitor is very promising for on-chip energy storage applications due to favorable integratability with the standard complementary metal-oxide-semiconductor (CMOS) process.

12.
Materials (Basel) ; 16(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176212

ABSTRACT

ZnO and Al-doped ZnO (AZO) thin films were prepared using the sol-gel method and deposited on a Silicon (Si(100)) substrate using the dipping technique. The structure, morphology, thickness, optical constants in the spectral range 300-1700 nm, bandgap (Eg) and photoluminescence (PL) properties of the films were analyzed using X-ray diffractometry (XRD), X-ray fluorescence (XRF), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic ellipsometry (SE), Raman analysis and PL spectroscopy. The results of the structure and morphology analyses showed that the thin films are polycrystalline with a hexagonal wurtzite structure, as well as continuous and homogeneous. The PL background and broader peaks observable in the Raman spectra of the AZO film and the slight increase in the optical band gap of the AZO thin film, compared to undoped ZnO, highlight the effect of defects introduced into the ZnO lattice and an increase in the charge carrier density in the AZO film. The PL emission spectra of the AZO thin film showed a strong UV line corresponding to near-band-edge ZnO emission along with weak green and red emission bands due to deep-level defects, attributed to the oxygen-occupied zinc vacancies (OZn lattice defects).

13.
Article in English | MEDLINE | ID: mdl-36906923

ABSTRACT

Chromium oxide (Cr2O3) is a beneficial metal oxide used to prevent the backward reaction in photocatalytic water splitting. The present work investigates the stability, oxidation state, and the bulk and surface electronic structure of Cr-oxide photodeposited onto P25, BaLa4Ti4O15, and Al:SrTiO3 particles as a function of the annealing process. The oxidation state of the Cr-oxide layer as deposited is found to be Cr2O3 on the surface of P25 and Al:SrTiO3 particles and Cr(OH)3 on BaLa4Ti4O15. After annealing at 600 °C, for P25 (a mixture of rutile and anatase TiO2), the Cr2O3 layer diffuses into the anatase phase but remains at the surface of the rutile phase. For BaLa4Ti4O15, Cr(OH)3 converts to Cr2O3 upon annealing and diffuses slightly into the particles. However, for Al:SrTiO3, the Cr2O3 remains stable at the surface of the particles. The diffusion here is due to the strong metal-support interaction effect. In addition, some of the Cr2O3 on the P25, BaLa4Ti4O15, and Al:SrTiO3 particles is reduced to metallic Cr after annealing. The effect of Cr2O3 formation and diffusion into the bulk on the surface and bulk band gaps is investigated with electronic spectroscopy, electron diffraction, DRS, and high-resolution imaging. The implications of the stability and diffusion of Cr2O3 for photocatalytic water splitting are discussed.

14.
Molecules ; 28(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903428

ABSTRACT

In this study, a series of Al-doped metal-organic frameworks (AlxZr(1-x)-UiO-66) were synthesized through a one-step solvothermal method. Various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 sorption measurement, suggested that the Al doping was uniform and barely influenced the crystallinity, chemical stability, and thermal stability of the materials. Two cationic dyes, safranine T (ST) and methylene blue (MB), were selected for investigating the adsorption performances of Al-doped UiO-66 materials. Al0.3Zr0.7-UiO-66 exhibited 9.63 and 5.54 times higher adsorption capacities than UiO-66, 498 mg/g and 251 mg/g for ST and MB, respectively. The improved adsorption performance can be attributed to π-π interaction, hydrogen bond, and the coordination between the dye and Al-doped MOF. The pseudo-second-order and Langmuir models explained the adsorption process well, which indicated that the dye adsorption on Al0.3Zr0.7-UiO-66 mostly occurred through chemisorption on homogeneous surfaces. A thermodynamic study indicated the adsorption process was spontaneous and endothermic. The adsorption capacity did not decrease significantly after four cycles.

15.
ACS Appl Mater Interfaces ; 15(2): 3112-3118, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36602943

ABSTRACT

Transparent conductive oxides (TCO) have the unique characteristics of combining optical transparency with high electrical conductivity; such a property makes them uniquely alluring for applications in visible and infrared photonics. One of their most interesting features is the large sensitivity of their optical response to the doping level. We performed the active electrical manipulation of the dielectric properties of aluminum-doped ZnO (AZO), a TCO-based on Earth-abundant elements. We actively tuned the optical and electric performances of AZO films by means of an applied voltage in a parallel-plate capacitor configuration, with SrTiO3 as the dielectric, and monitored the effect of charge injection/depletion by means of in-operando spectroscopic ellipsometry. Calculations of the optical response of the gated system allowed us to extract the spatially resolved variations in the dielectric function of the TCO and infer the injected/depleted charge profile at the interface.

16.
J Colloid Interface Sci ; 629(Pt B): 254-262, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36155920

ABSTRACT

Super broadband optical absorbers with ultrathin films have been keenly pursued for a long time. Although highly lossy materials with sharp light attenuation have the potential to become super absorbers, a large percent of light from free space is inevitably reflected back for the distinct impedance mismatch. Here, a simple strategy, of which reducing the thickness of highly-lossy thin films to minish reflectance and simultaneously folding the ultrathin films to make light multiple pass through, is proposed to obtain super broadband mid-infrared absorbers with ultrathin films. Along this line, the absorbers were prepared by depositing Al-doped ZnO film on scaffolds consisted of alumina spherical shells, whose substrates were opaque. When the thickness of Al-doped ZnO is 43 nm and the layer number of scaffolds is three, a maximum average absorptance was achieved as 97.6% over the wavelength range from 3 to 15 µm. Applying this strategy on polished Al foil, excellent infrared camouflage performance on human-body background was demonstrated. Featured by the strong broadband optical absorption with ultrathin films, flexible access to multiple substrates and low-cost procedures, this approach has the potential in widespread applications of infrared thermal emitters and optoelectronic devices.

17.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555102

ABSTRACT

Quasi-spherical undoped ZnO and Al-doped ZnO nanoparticles with different aluminum content, ranging from 0.5 to 5 at% of Al with respect to Zn, were synthesized. These nanoparticles were evaluated as photocatalysts in the photodegradation of the Rhodamine B (RhB) dye aqueous solution under UV-visible light irradiation. The undoped ZnO nanopowder annealed at 400 °C resulted in the highest degradation efficiency of ca. 81% after 4 h under green light irradiation (525 nm), in the presence of 5 mg of catalyst. The samples were characterized using ICP-OES, PXRD, TEM, FT-IR, 27Al-MAS NMR, UV-Vis and steady-state PL. The effect of Al-doping on the phase structure, shape and particle size was also investigated. Additional information arose from the annealed nanomaterials under dynamic N2 at different temperatures (400 and 550 °C). The position of aluminum in the ZnO lattice was identified by means of 27Al-MAS NMR. FT-IR gave further information about the type of tetrahedral sites occupied by aluminum. Photoluminescence showed that the insertion of dopant increases the oxygen vacancies reducing the peroxide-like species responsible for photocatalysis. The annealing temperature helps increase the number of red-emitting centers up to 400 °C, while at 550 °C, the photocatalytic performance drops due to the aggregation tendency.


Subject(s)
Zinc Oxide , Zinc Oxide/chemistry , Spectroscopy, Fourier Transform Infrared , Aluminum , Ultraviolet Rays
18.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364511

ABSTRACT

The low-temperature microwave-assisted hydrothermal method was used to successfully grow pure and Al-doped ZnO (AZO) nanorod (NR) arrays on glass substrates. The combined effects of doping and pH on the structural properties, surface chemistry, and optical properties of all samples were investigated. Thermodynamic-based simulations of the growth solution were performed and a growth mechanism, that considers the effects of both the pH and Al-doping, is proposed, and discussed. Tuning the solution pH is key parameter to grow well-aligned, single crystal, highly packed, and high aspect ratio nanorod arrays. Moreover, the optical absorption in the visible range is enhanced by controlling the pH value. The PL spectra reveal a shift of the main radiative emission from the band-to-band into a transition involving deep defect levels of Zinc interstitial Zni. This shift is caused by an enhancement of the non-radiative components (phonon relaxation) at high pH values. The production of well-ordered ZnO and AZO nanorod arrays with visible-active absorption/emission centers would increase their potential use in various applications.

19.
Materials (Basel) ; 15(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36143596

ABSTRACT

Flash memories are the preferred choice for data storage in portable gadgets. The charge trapping nonvolatile flash memories are the main contender to replace standard floating gate technology. In this work, we investigate metal/blocking oxide/high-k charge trapping layer/tunnel oxide/Si (MOHOS) structures from the viewpoint of their application as memory cells in charge trapping flash memories. Two different stacks, HfO2/Al2O3 nanolaminates and Al-doped HfO2, are used as the charge trapping layer, and SiO2 (of different thickness) or Al2O3 is used as the tunneling oxide. The charge trapping and memory windows, and retention and endurance characteristics are studied to assess the charge storage ability of memory cells. The influence of post-deposition oxygen annealing on the memory characteristics is also studied. The results reveal that these characteristics are most strongly affected by post-deposition oxygen annealing and the type and thickness of tunneling oxide. The stacks before annealing and the 3.5 nm SiO2 tunneling oxide have favorable charge trapping and retention properties, but their endurance is compromised because of the high electric field vulnerability. Rapid thermal annealing (RTA) in O2 significantly increases the electron trapping (hence, the memory window) in the stacks; however, it deteriorates their retention properties, most likely due to the interfacial reaction between the tunneling oxide and the charge trapping layer. The O2 annealing also enhances the high electric field susceptibility of the stacks, which results in better endurance. The results strongly imply that the origin of electron and hole traps is different-the hole traps are most likely related to HfO2, while electron traps are related to Al2O3. These findings could serve as a useful guide for further optimization of MOHOS structures as memory cells in NVM.

20.
J Mol Graph Model ; 117: 108302, 2022 12.
Article in English | MEDLINE | ID: mdl-36049401

ABSTRACT

In this project, we have investigated the possibility of mimicking the natural photosynthesis, as well as sensing and adsorption application of aluminum decorated graphitic C3N4 (Al-g-C3N4) QDs (toward some air pollutants containing CO, CO2, and SO2). The results of the potential energy surface (PES) studies show that in all three adsorption processes, the energy changes are negative (-10.70 kcal mol-1, -16.81 kcal mol-1, and -79.97 kcal mol-1 for CO, CO2, and SO2 gasses, respectively). Thus, all of the adsorption processes (mainly SO2) are spontaneous. Moreover, the frontier molecular orbital (FMO) investigations indicate that the Al-g-C3N4 QD could be used as a suitable semiconductor sensor for detection of CO, and CO2 (as carbon oxides) in one hand, and SO2 gaseous species on the other hand. Finally, the results reveal that those QDs could be applied for artificial photosynthesis (in presence of CO2; Δµh-e = 1.43 V), and for water splitting process for the H2 generation (Δµh-e = 1.23 V) as a clean fuel for near future.


Subject(s)
Air Pollutants , Air Pollution/prevention & control , Aluminum/chemistry , Graphite , Photosynthesis , Adsorption , Carbon , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Catalysis , Nitrogen , Oxides , Sulfur Dioxide/chemistry , Sulfur Dioxide/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL