Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
J Biol Chem ; 300(9): 107626, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098528

ABSTRACT

With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) which is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km = 2.7 µM and Vmax = 794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in the lungs of control mice with an even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.

2.
Plant J ; 120(1): 272-288, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39190782

ABSTRACT

Among the three active aldehyde oxidases in Arabidopsis thaliana leaves (AAO1-3), AAO3, which catalyzes the oxidation of abscisic-aldehyde to abscisic-acid, was shown recently to function as a reactive aldehyde detoxifier. Notably, aao2KO mutants exhibited less senescence symptoms and lower aldehyde accumulation, such as acrolein, benzaldehyde, and 4-hydroxyl-2-nonenal (HNE) than in wild-type leaves exposed to UV-C or Rose-Bengal. The effect of AAO2 expression absence on aldehyde detoxification by AAO3 and/or AAO1 was studied by comparing the response of wild-type plants to the response of single-functioning aao1 mutant (aao1S), aao2KO mutants, and single-functioning aao3 mutants (aao3Ss). Notably, aao3Ss exhibited similar aldehyde accumulation and chlorophyll content to aao2KO treated with UV-C or Rose-Bengal. In contrast, wild-type and aao1S exhibited higher aldehyde accumulation that resulted in lower remaining chlorophyll than in aao2KO leaves, indicating that the absence of active AAO2 enhanced AAO3 detoxification activity in aao2KO mutants. In support of this notion, employing abscisic-aldehyde as a specific substrate marker for AAO3 activity revealed enhanced AAO3 activity in aao2KO and aao3Ss leaves compared to wild-type treated with UV-C or Rose-Bengal. The similar abscisic-acid level accumulated in leaves of unstressed or stressed genotypes indicates that aldehyde detoxification by AAO3 is the cause for better stress resistance in aao2KO mutants. Employing the sulfuration process (known to activate aldehyde oxidases) in wild-type, aao2KO, and molybdenum-cofactor sulfurase (aba3-1) mutant plants revealed that the active AAO2 in WT employs sulfuration processes essential for AAO3 activity level, resulting in the lower AAO3 activity in WT than AAO3 activity in aao2KO.


Subject(s)
Aldehydes , Arabidopsis Proteins , Arabidopsis , Plant Leaves , Ultraviolet Rays , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects , Aldehydes/metabolism , Aldehyde Oxidase/metabolism , Aldehyde Oxidase/genetics , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Mutation , Chlorophyll/metabolism
3.
Biomolecules ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062583

ABSTRACT

Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism, generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs' inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins. Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research highlights SOX's potential as a diagnostic marker for HCC, offering promising sensitivity and specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles of molybdenum-containing enzymes in human physiology and disease pathology is essential for advancing diagnostic and therapeutic strategies for various health conditions, particularly those related to liver dysfunction. Further research into the molecular mechanisms underlying these enzymes' functions could lead to novel treatments and improved patient outcomes.


Subject(s)
Aldehyde Oxidase , Molybdenum , Oxidation-Reduction , Sulfite Oxidase , Xanthine Oxidase , Humans , Molybdenum/metabolism , Xanthine Oxidase/metabolism , Sulfite Oxidase/metabolism , Aldehyde Oxidase/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/enzymology , Animals , Liver Neoplasms/metabolism , Liver Neoplasms/enzymology , Reactive Oxygen Species/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress
4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928288

ABSTRACT

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Subject(s)
Abscisic Acid , Cadmium , Gene Expression Regulation, Plant , Pisum sativum , Plant Leaves , Plant Proteins , Abscisic Acid/metabolism , Pisum sativum/metabolism , Pisum sativum/drug effects , Pisum sativum/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Cadmium/metabolism , Cadmium/toxicity , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/genetics
5.
Expert Opin Drug Metab Toxicol ; 20(5): 399-406, 2024 May.
Article in English | MEDLINE | ID: mdl-38706380

ABSTRACT

BACKGROUND: Methotrexate (MTX) is partially metabolized by aldehyde oxidase (AOX) in the liver and its clinical impact remains unclear. In this study, we aimed to demonstrate how AOX contributes to MTX-induced hepatotoxicity in vitro and clarify the relationship between concomitant AOX inhibitor use and MTX-associated liver injury development using the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: We assessed intracellular MTX accumulation and cytotoxicity using HepG2 cells. We used the FAERS database to detect reporting odds ratio (ROR)-based MTX-related hepatotoxicity event signals. RESULTS: AOX inhibition by AOX inhibitor raloxifene and siRNA increased the MTX accumulation in HepG2 cells and enhanced the MTX-induced cell viability reduction. In the FAERS analysis, the ROR for MTX-related hepatotoxicity increased with non-overlap of 95% confidence interval when co-administered with drugs with higher Imax, u (maximum unbound plasma concentration)/IC50 (half-maximal inhibitory concentration for inhibition of AOX) calculated based on reported pharmacokinetic data. CONCLUSION: AOX inhibition contributed to MTX accumulation in the liver, resulting in increased hepatotoxicity. Our study raises concerns regarding MTX-related hepatotoxicity when co-administered with drugs that possibly inhibit AOX activity at clinical concentrations.


Subject(s)
Adverse Drug Reaction Reporting Systems , Aldehyde Oxidase , Chemical and Drug Induced Liver Injury , Methotrexate , Methotrexate/adverse effects , Methotrexate/administration & dosage , Humans , Aldehyde Oxidase/metabolism , Chemical and Drug Induced Liver Injury/etiology , Hep G2 Cells , Cell Survival/drug effects , Antimetabolites, Antineoplastic/adverse effects , Antimetabolites, Antineoplastic/administration & dosage , United States , United States Food and Drug Administration , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Inhibitory Concentration 50
6.
Mol Pharm ; 21(6): 2740-2750, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38717252

ABSTRACT

Despite the increasing importance of aldehyde oxidase (AO) in the drug metabolism of clinical candidates, ontogeny data for AO are limited. The objective of our study was to characterize the age-dependent AO content and activity in the human liver cytosolic fraction (HLC) and human hepatocytes (HH). HLC (n = 121 donors) and HH (n = 50 donors) were analyzed for (1) AO protein content by quantitative proteomics and (2) enzyme activity using carbazeran as a probe substrate. AO activity showed high technical variability and poor correlation with the content in HLC samples, whereas hepatocyte samples showed a strong correlation between the content and activity. Similarly, AO content and activity showed no significant age-dependent differences in HLC samples, whereas the average AO content and activity in hepatocytes increased significantly (∼20-40-fold) from the neonatal levels (0-28 days). Based on the hepatocyte data, the age at which 50% of the adult AO content is reached (age50) was 3.15 years (0.32-13.97 years, 95% CI). Metabolite profiling of carbazeran revealed age-dependent metabolic switching and the role of non-AO mechanisms (glucuronidation and desmethylation) in carbazeran elimination. The content-activity correlation in hepatocytes improved significantly (R2 = 0.95; p < 0.0001) in samples showing <10% contribution of glucuronidation toward the overall metabolism, confirming that AO-mediated oxidation and glucuronidation are the key routes of carbazeran metabolism. Considering the confounding effect of glucuronidation on AO activity, AO content-based ontogeny data are a more direct reflection of developmental changes in protein expression. The comprehensive ontogeny data of AO in HH samples are more reliable than HLC data, which are important for developing robust physiologically based pharmacokinetic models for predicting AO-mediated metabolism in children.


Subject(s)
Aldehyde Oxidase , Hepatocytes , Liver , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult , Aldehyde Oxidase/metabolism , Cytosol/enzymology , Hepatocytes/enzymology , Liver/enzymology , Proteomics
7.
AAPS J ; 26(3): 36, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38546903

ABSTRACT

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.


Subject(s)
High-Throughput Screening Assays , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Cytochrome P-450 Enzyme System , Hepatocytes , Enzyme Inhibitors/pharmacology
8.
Pestic Biochem Physiol ; 199: 105805, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458670

ABSTRACT

Diquat (DQ) poisoning has garnered attention in recent years, primarily due to the rising incidence of cases worldwide, coupled with the absence of a viable antidote for its treatment. Despite the fact that diquat monopyridone (DQ-M) has been identified as a significant metabolite of DQ, the enzyme responsible for its formation remains unknown. In this study, we have identified aldehyde oxidase (AOX) as a vital enzyme involved in DQ oxidative metabolism. The metabolism of DQ to DQ-M was significantly inhibited by AOX inhibitors including raloxifene and hydralazine. The source of oxygen incorporated into DQ-M was proved to be from water through a H218O incubation experiment which further corroborated DQ-M formation via AOX metabolism. The product of DQ-M in vitro generated by fresh rat tissues co-incubation was consistent with its AOX expression. The result of the molecular docking analysis of DQ and AOX protein showed that DQ is capable of binding to AOX. Furthermore, the cytotoxicity of DQ was significantly higher than DQ-M at the same concentration tested in six cell types. This work is the first to uncover the involvement of aldehyde oxidase, a non-cytochrome P450 enzyme, in the oxidative metabolic pathway of diquat, thus providing a potential target for the development of detoxification treatment.


Subject(s)
Aldehyde Oxidase , Diquat , Rats , Animals , Diquat/pharmacology , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Molecular Docking Simulation , Oxidative Stress , Metabolic Networks and Pathways , Cytochrome P-450 Enzyme System/metabolism
9.
Acta Pharm Sin B ; 14(2): 623-634, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322350

ABSTRACT

Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn.

10.
Acta Pharmaceutica Sinica B ; (6): 623-634, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1011277

ABSTRACT

Aldehyde oxidase (AOX) is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics. AOX-mediated metabolism can result in unexpected outcomes, such as the production of toxic metabolites and high metabolic clearance, which can lead to the clinical failure of novel therapeutic agents. Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability. In this study, we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism. AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction, while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks. AOMP significantly outperformed the benchmark methods in both cross-validation and external testing. Using AOMP, we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability, which were validated through in vitro experiments. Furthermore, for the convenience of the community, we established the first online service for AOX metabolism prediction based on AOMP, which is freely available at https://aomp.alphama.com.cn.

11.
Expert Opin Drug Saf ; 23(1): 89-97, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097359

ABSTRACT

OBJECTIVES: Aldehyde oxidase (AO) is a molybdenum-containing redox enzyme similar to xanthine oxidase that is involved in the thiopurine metabolism. This study investigated the effects of drug-drug interactions (DDIs) between azathioprine (AZA) and AO inhibitors on hematologic and hepatic disorders using the U.S. Food and Drug Administration Adverse Event Reporting System and the Japanese Adverse Drug Event Report database. METHODS: The presence of DDI was assessed using the interaction signal scores (ISSs) calculated via the reporting odds ratios and 95% confidence intervals. The study used reports of 'azathioprine' as a suspect drug for adverse effects. AO inhibitors were selected based on previous in vitro reports. RESULTS: Some drugs tested positive for ISSs in each database and type of adverse effect (hematologic or hepatic disorder) analysis. Among these drugs, chlorpromazine, clozapine, hydralazine, and quetiapine could inhibit AZA metabolism via AO, given the previously reported clinical blood concentration and inhibitory effects of each drug. CONCLUSION: Concomitant use of AO inhibitors increased the signals for AZA-induced adverse effects. To date, no studies have evaluated the clinical importance of AO as a drug-metabolizing enzyme, and further in vitro and clinical research is needed to clarify the contribution of AO to the pharmacokinetics of thiopurines.


Subject(s)
Azathioprine , Drug-Related Side Effects and Adverse Reactions , Humans , Aldehyde Oxidase/metabolism , Azathioprine/adverse effects , Drug Interactions , Pharmaceutical Preparations
12.
Curr Biol ; 33(24): 5355-5367.e5, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37995699

ABSTRACT

Soybean (Glycine max) is a crop with high demand for molybdenum (Mo) and typically requires Mo fertilization to achieve maximum yield potential. However, the genetic basis underlying the natural variation of Mo concentration in soybean and its impact on soybean agronomic performance is still poorly understood. Here, we performed a genome-wide association study (GWAS) to identify GmMOT1.1 and GmMOT1.2 that drive the natural variation of soybean Mo concentration and confer agronomic traits by affecting auxin synthesis. The soybean population exhibits five haplotypes of the two genes, with the haplotype 5 demonstrating the highest expression of GmMOT1.1 and GmMOT1.2, as well as the highest transport activities of their proteins. Further studies showed that GmMOT1.1 and GmMOT1.2 improve soybean yield, especially when cultivated in acidic or slightly acidic soil. Surprisingly, these two genes contribute to soybean growth by enhancing the activity of indole-3-acetaldehyde (IAAld) aldehyde oxidase (AO), leading to increased indole-3-acetic acid (IAA) synthesis, rather than being involved in symbiotic nitrogen fixation or nitrogen assimilation. Furthermore, the geographical distribution of five haplotypes in China and their correlation with soil pH suggest the potential significance of GmMOT1.1 and GmMOT1.2 in soybean breeding strategies.


Subject(s)
Glycine max , Molybdenum , Glycine max/genetics , Molybdenum/metabolism , Genome-Wide Association Study , Plant Breeding , Indoleacetic Acids/metabolism , Soil
13.
Xenobiotica ; : 1-49, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966132

ABSTRACT

1. Unexpected metabolism could lead to the failure of many late-stage drug candidates or even the withdrawal of approved drugs. Thus, it is critical to predict and study the dominant routes of metabolism in the early stages of research. In this study, we describe the development and validation of a 'WhichEnzyme' model that accurately predicts the enzyme families most likely to be responsible for a drug-like molecule's metabolism. Furthermore, we combine this model with our previously published regioselectivity models for Cytochromes P450, Aldehyde Oxidases, Flavin-containing Monooxygenases, UDP-glucuronosyltransferases and Sulfotransferases - the most important Phase I and Phase II drug metabolising enzymes - and a 'WhichP450' model that predicts the Cytochrome P450 isoform(s) responsible for a compound's metabolism. The regioselectivity models are based on a mechanistic understanding of these enzymes' actions, and use quantum mechanical simulations with machine learning methods to accurately predict sites of metabolism and the resulting metabolites. We train heuristic based on the outputs of the 'WhichEnzyme', 'WhichP450', and regioselectivity models to determine the most likely routes of metabolism and metabolites to be observed experimentally. Finally, we demonstrate that this combination delivers high sensitivity in identifying experimentally reported metabolites and higher precision than other methods for predicting in vivo metabolite profiles.

14.
Eur J Pharm Sci ; 191: 106603, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37827455

ABSTRACT

Aldehyde oxidase (AOX) is a cytosolic drug-metabolizing enzyme which has attracted increasing attention in drug development due to its high hepatic expression, broad substrate profile and species differences. In contrast, there is limited information on the presence and activity of AOX in extrahepatic tissues including ocular tissues. Because several ocular drugs are potential substrates for AOX, we performed a comprehensive analysis of the AOX1 expression and activity profile in seven ocular tissues from humans, rabbits, and pigs. AOX activities were determined using optimized assays for the established human AOX1 probe substrates 4-dimethylamino-cinnamaldehyde (DMAC) and phthalazine. Inhibition studies were undertaken in conjunctival and retinal homogenates using well-established human AOX1 inhibitors menadione and chlorpromazine. AOX1 protein contents were quantitated with targeted proteomics and confirmed by immunoblotting. Overall, DMAC oxidation rates varied over 10-fold between species (human ˃˃ rabbit ˃ pig) and showed 2- to 6-fold differences between tissues from the same species. Menadione seemed a more potent inhibitor of DMAC oxidation across species than chlorpromazine. Human AOX1 protein levels were highest in the conjunctiva, followed by most posterior tissues, whereas anterior tissues showed low levels. The rabbit AOX1 expression was high in the conjunctiva, retinal pigment epithelial (RPE), and choroid while lower in the anterior tissues. Quantification of pig AOX1 was not successful but immunoblotting confirmed the presence of AOX1 in all species. DMAC oxidation rates and AOX1 contents correlated quite well in humans and rabbits. This study provides, for the first time, insights into the ocular expression and activity of AOX1 among multiple species.


Subject(s)
Aldehyde Oxidase , Vitamin K 3 , Humans , Rabbits , Animals , Swine , Aldehyde Oxidase/chemistry , Aldehyde Oxidase/metabolism , Vitamin K 3/metabolism , Chlorpromazine , Oxidation-Reduction , Liver/metabolism
15.
Toxicol Lett ; 388: 48-55, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37806366

ABSTRACT

SGX523 is a c-Met tyrosine kinase inhibitor that failed in clinical trials because of renal toxicity caused by crystal deposits in renal tubules. SGX523 is metabolized by aldehyde oxidase (AOX) in a species-dependent manner to the considerably less soluble 2-quinolinone-SGX523, which is likely involved in the clinically observed obstructive nephropathy. This study investigated the metabolism and renal toxicity of SGX523 in chimeric mice with humanized livers (humanized-liver mice). The 2-quinolinone-SGX523 formation activity was higher in humanized-liver mouse and human hepatocytes than in mouse hepatocytes. Additionally, this activity in the liver cytosolic fraction from humanized-liver mice was inhibited by the AOX inhibitors raloxifene and hydralazine. After oral SGX523 administration, higher maximum concentrations, larger areas under the plasma concentration versus time curves, and higher urinary concentrations of 2-quinolinone-SGX523 were observed in humanized-liver mice than in non-humanized mice. Serum creatinine and blood urea nitrogen levels were elevated in humanized-liver mice following repeated oral SGX523 administration. The accumulation of amorphous material in the tubules and infiltration of inflammatory cells around tubules were observed in the kidneys of humanized-liver mice after repeated oral SGX523 administration. These findings demonstrate that humanized-liver mice are useful for understanding the metabolism and toxicity of SGX523.


Subject(s)
Quinolones , Renal Insufficiency , Mice , Humans , Animals , Aldehyde Oxidase/metabolism , Liver/metabolism , Hepatocytes/metabolism , Renal Insufficiency/metabolism , Quinolones/metabolism
16.
Molecules ; 28(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570788

ABSTRACT

Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.


Subject(s)
Nitric Oxide , Nitrites , Animals , Mammals/metabolism , Molybdenum/chemistry , Nitric Oxide/metabolism , Nitrite Reductases/chemistry , Nitrites/chemistry , Oxidation-Reduction , Oxygen/metabolism , Xanthine Oxidase/metabolism
17.
Cell Rep ; 42(6): 112609, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37289586

ABSTRACT

We applied raw human liver microsome lysate to a holey carbon grid and used cryo-electron microscopy (cryo-EM) to define its composition. From this sample we identified and simultaneously determined high-resolution structural information for ten unique human liver enzymes involved in diverse cellular processes. Notably, we determined the structure of the endoplasmic bifunctional protein H6PD, where the N- and C-terminal domains independently possess glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase enzymatic activity, respectively. We also obtained the structure of heterodimeric human GANAB, an ER glycoprotein quality-control machinery that contains a catalytic α subunit and a noncatalytic ß subunit. In addition, we observed a decameric peroxidase, PRDX4, which directly contacts a disulfide isomerase-related protein, ERp46. Structural data suggest that several glycosylations, bound endogenous compounds, and ions associate with these human liver enzymes. These results highlight the importance of cryo-EM in facilitating the elucidation of human organ proteomics at the atomic level.


Subject(s)
Endoplasmic Reticulum , Protein Disulfide-Isomerases , Humans , Endoplasmic Reticulum/metabolism , Cryoelectron Microscopy , Protein Disulfide-Isomerases/metabolism , Catalytic Domain , Liver/metabolism
18.
J Pharm Biomed Anal ; 232: 115415, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37120975

ABSTRACT

This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC50 of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.


Subject(s)
Aurora Kinase B , Cytochrome P-450 Enzyme System , Microsomes, Liver , Mitosis , Humans , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Microsomes, Liver/metabolism , Oxidation-Reduction
19.
Metabolites ; 13(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36984889

ABSTRACT

Aldehyde oxidase (AOX) plays an important role in drug metabolism. Human AOX (hAOX) is widely distributed in the body, and there are some differences between species. Currently, animal models cannot accurately predict the metabolism of hAOX. Therefore, more and more in silico models have been constructed for the prediction of the hAOX metabolism. These models are based on molecular docking and quantum chemistry theory, which are time-consuming and difficult to automate. Therefore, in this study, we compared traditional machine learning methods, graph convolutional neural network methods, and sequence-based methods with limited data, and proposed a ligand-based model for the metabolism prediction catalyzed by hAOX. Compared with the published models, our model achieved better performance (ACC = 0.91, F1 = 0.77). What's more, we built a web server to predict the sites of metabolism (SOMs) for hAOX. In summary, this study provides a convenient and automatable model and builds a web server named Meta-hAOX for accelerating the drug design and optimization stage.

20.
J Nutr Sci Vitaminol (Tokyo) ; 69(1): 71-75, 2023.
Article in English | MEDLINE | ID: mdl-36858544

ABSTRACT

Aldehyde oxidase (AO) plays an important role in the metabolism of antitumor and antiviral drugs, including methotrexate, favipiravir, and acyclovir. The consumption of blueberry fruits or their extracts, which contain large amounts of anthocyanins, has recently increased. The intake of large amounts of anthocyanins occurs through the frequent consumption of blueberries or their functional foods, which may result in unwanted interactions between anthocyanins and medicinal drugs. Therefore, the present study examined the inhibition of AO by anthocyanins, anthocyanidins, and blueberry extracts in human liver cytosol using a HPLC assay. A comparison of the 50% inhibitory concentration (IC50) values of the test compounds showed that anthocyanidins slightly suppressed AO activity, whereas the inhibitory effects of anthocyanins and blueberry extracts were negligible. The inhibitory activities of the anthocyanins tested were approximately 60- to 130-fold weaker than that of the positive control menadione and were almost negligible. Furthermore, they were approximately 2,000-fold less potent than that of raloxifene, a typical AO inhibitor, and, thus, unlikely to interfere with drug metabolism by AO. In addition, since the plasma concentrations of anthocyanins after their administration were generally lower than the IC50 level, the inhibition of AO substrate metabolism by anthocyanins does not appear to be severe.


Subject(s)
Aldehyde Oxidase , Anthocyanins , Humans , Chromatography, High Pressure Liquid , Fruit , Functional Food
SELECTION OF CITATIONS
SEARCH DETAIL