Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Curr Drug Deliv ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39289949

ABSTRACT

INTRODUCTION: Although lignin is one of the most naturally abundant biopolymers, the overall status of its utilization has long been subpar. The ability of Lignin to readily self-assemble into nanoparticles, along with its good biocompatibility and minimal toxicity, makes it a perfect agent for nanocarriers and drug delivery. METHOD: Hence, in this study, we have attempted to examine lignin nanoparticles (LNPs) as an efficient pH-responsive nanocarrier for gastric-irritant oral NSAID, aspirin. Alkali lignin (AL) was extracted from rice straw via alkaline treatment, and the lignin nanoparticles were synthesized from lignin using the acid precipitation method. The average particle size was 201.37 ± 1.20 nm, and the synthesized LNPs exhibited a spherical shape and smooth outer surface along with high polydispersity (PDI= 0.284 ± 0.012). The LNPs showed moderate hemocompatibility during in vitro hemolysis studies. The nanoparticles presented nearly similar chemical structures to the AL from which they were developed, and the FT-IR absorption spectra confirmed the similarity of this chemical structure to the LNPs and AL. Aspirin was successfully loaded into the LNPs with a satisfactory drug loading value of 39.12 ± 1.50 and an excellent encapsulation efficiency value of 91.44 ± 0.59. RESULTS: Finally, the LNPs were capable of protecting the loaded drug at the acidic pH of the stomach (1.2) with just 29.20% release of the loaded aspirin after 10 h of observation in vitro. Contrarily, the LNPs were capable of rapidly releasing the aspirin at the basic pH of the intestine (7.4) with nearly 90% release of the loaded drug after 10 h observation in vitro. The basic pH of the intestine might lead to gradual dissociation of the LNPs followed by swift release of the loaded cargo. CONCLUSION: These findings substantiate that the LNPs carry the potential to be an apt and safe nanocarrier for oral drugs like aspirin as well as parenteral drugs, and LNPs can be utilized as an efficient alternative to enteric coating.

2.
Article in English | MEDLINE | ID: mdl-39292306

ABSTRACT

A synergistic photocatalytic system based on Fe-based perovskite with persulfate was constructed for alkali lignin (AL) degradation in pulp and paper wastewater. The degradation performance and mechanism on AL were carried out under ambient temperature and pressure, accompanied by visible light irradiation. The results showed that the synergistic photocatalytic system exhibited much better performance on AL degradation than the single catalytic system. The degradation efficiency reached 73.5% under the optimal conditions and was constant at around 65% over the pH range from 2 to 8. A significant escalation of the AL degradation was observed at pH 10, reaching 80.1%. The photogenerated holes, 1O2 and SO4-·, generated by the system were involved in the degradation, and the holes played a dominant role. During the degradation process, the efficient promotion of cleavage events in lignin methoxy, ß-O-4 bond, and benzene ring was observed. Consequently, the depolymerization process led to the generation of high-value compounds, namely p-hydroxybenzaldehyde and vanillin. Remarkably, the yields of the high-value compounds in the synergistic photocatalytic system were five times larger than those in the control. This study offered a viable method to activate persulfate for alkali lignin degradation and to achieve a mutually beneficial strategy for wastewater treatment and recycling.

3.
Int J Biol Macromol ; 279(Pt 3): 135311, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236948

ABSTRACT

Magnetic lignin nanoparticles (MLNs) were prepared by inducing their self-assembly through lignin regeneration in the [N-methyl-2-pyrrolidone][C1-C4 carboxylic acid] ionic liquids ([NMP]ILs), which are low-cost protic ionic liquid. [NMP]ILs are self-assembling solvent that can enhance the adsorption capacity of MLNs to a greater degree than tetrahydrofuran or H2O. Additionally, the anion types of [NMP]IL greatly influence the physiochemical properties of MLNs. The MLNs prepared through self-assembly with [NMP][formate] (MLN/[NMP][For]) exhibited a higher maximum adsorption capacity (134.53 mg/g) than the [NMP]ILs of C2-C4 carboxylate anions. MLN/[NMP][For] demonstrated stable adsorption within a pH range of 6-10 or at high salt concentrations (0.01-0.5 mol/L), retaining over 80 % of its regeneration efficiency after 5 cycles. In addition, MLN/[NMP][For] selectively removed cationic dyes in mixed binary anionic-cationic dye solutions. This work demonstrated the feasibility of preparing magnetic biosorbents with good selectivity and stability though regeneration and by adjusting the anions of ionic liquids.

4.
ACS Appl Mater Interfaces ; 16(34): 44850-44862, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39159305

ABSTRACT

The remediation of organic wastewater through advanced oxidation processes (AOPs) based on metal-free biochar/persulfate systems has been extensively researched. In this work, boron-doped alkali lignin biochar (BKC1:3) was utilized to activate peroxymonosulfate (PMS) for the removal of sulfamethazine (SMZ). The porous structure and substantial specific surface area of BKC1:3 facilitated the adsorption and thus degradation of SMZ. The XPS characterization and density functional theory (DFT) calculations demonstrated that -BCO2 was the main active site of BKC1:3, which dominated the occurrence of nonradical pathways. Neither quenching experiments nor EPR characterization revealed the generation of free radical signals. Compared with KC, BKC1:3 possessed more electron-rich regions. The narrow energy gap (ΔEgap = 1.87 eV) of BKC (-BCO2) promoted the electron transfer to the substable complex (BKC@PMS*) on SMZ, driving the electron transfer mechanism. In addition, the adsorption energy of BKC(-BCO2)@PMS was lower (-0.75 eV → -5.12 eV), implying a more spontaneous adsorption process. The O-O (PMS) bond length in BKC(-BCO2)@PMS increased significantly (1.412 Š→ 1.481 Å), which led to the easier decomposition of PMS during adsorption and facilitated the generation of 1O2. More importantly, a combination of Gaussian and LC-MS techniques was hypothesized regarding the attack sites and degradation intermediates of the active species in this system. The synergistic T.E.S.T software and toxicity tests predicted low or even no toxicity of the intermediates. Overall, this study proposed a strategy for the preparation of metal-free biochar, aiming to inspire ideas for the treatment of organic-polluted wastewater through advanced oxidation processes (AOPs).

5.
Int J Biol Macromol ; 279(Pt 1): 135168, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214199

ABSTRACT

Frequent oil spills and the discharge of oily wastewaters become a significant threat to the environment and ecosystem. Herein, a non-fluorinated lignin-based melamine sponge with superhydrophobic and photothermal properties (labeled as MS@COF/LPs/PDMS) has been achieved by decorating with covalent organic framework (COF), lignin particles (LPs) and PDMS. The MS@COF/LPs/PDMS shows excellent surface superhydrophobicity with a water contact angle of 152.3° and a sliding angle of 6°. The adsorption capacities of the MS@COF/LPs/PDMS range from 38.4 g/g to 100.3 g/g for various oils and organic solvents, and the separation efficiency of the MS@COF/LPs/PDMS for CCl4 reaches 99.7 %. Furthermore, the maximum surface temperature of the MS@COF/LPs/PDMS reaches 61.2 °C because of the thermal vibration of LPs and COF under solar irradiation (1.0 kW/m2). Surprisingly, the MS@COF/LPs/PDMS can rapidly adsorb a droplet of crude oils within 32 s due to the superoleophilicity and excellent photothermal effect. Besides, the melting time of the MS@COF/LPs/PDMS (400 s) reduces by 70 % for an ice droplet under solar irradiation than that of pristine melamine sponge (1330 s). Thus, this study provides new insights into the rational design of low-cost lignin-based melamine sponges for the applications of oil/water separation, crude oil recovery, and de-icing.

6.
Waste Manag Res ; : 734242X241231394, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390711

ABSTRACT

Cadmium (Cd)-enriched adsorbents wastes possess great environmental risk due to their large-scale accumulation and toxicity in the natural environment. Recycling spent Cd-enriched adsorbents into efficient catalysts for advanced applications could address the environmental issues and attain the carbon neutral goal. Herein, a facile strategy is developed for the first time to reutilize the alkali lignin (AL)-derived biochar (ALB) absorbed with Cd into cadmium sulphide (CdS)/C composite for the efficient methylene blue (MB) removal. The ALB is initially treated with Cd-containing solution, then the recycling ALB samples with adsorbed Cd are converted to the final CdS/C composite using NaS2 as the sulphurizing reagent for vulcanization reaction. The optimal ALB400 demonstrates a high adsorption capacity of 576.0 mg g-1 for Cd removal. Then the converted CdS/C composite shows an efficient MB removal efficiency of 94%. The photodegradation mechanism is mainly attributed to carbon components in the CdS/C composite as electron acceptor promoting the separation of photoelectrons/holes and slowing down the abrasion of CdS particles. The enhanced charge transfer and contact between the carrier and the active site thus improves the removal performance and reusability. This work not only develops a method for removing Cd from wastewater effectively and achieving the waste resource utilization but also further offers a significant guidance to use other kinds of spent heavy metal removal adsorbents for the construction of low-cost and high value-added functional materials.

7.
Food Chem ; 442: 138412, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38241996

ABSTRACT

This study aims to investigate how alkali lignin inhibits protein digestion and explore thermal treatment as a potential solution. Solid alkali lignin species pre-heated at different temperatures (150, 200, and 250 °C) and soluble acid-differentiated fractions are subjected to in vitro protein digestion. A range of techniques, including Thermogravimetric Analysis (TGA), Size-Exclusion Chromatography (SEC), Zeta Potential Analyzer, 1H NMR, Isothermal Titration Calorimetry (ITC), and Molecular Docking, were used to investigate the inhibitory mechanism of alkali lignin on pancreatic proteases hydrolysis. Our results suggest that soluble alkali lignin inhibits pancreatic trypsin and chymotrypsin, with the acid-differentiated soluble fraction (LgpH<1) displaying the strongest inhibition and proteases' binding affinity due to the abundance of polar groups (e.g., -OH, -CHO), which facilitate hydrogen-bond formation. Furthermore, pre-heating lignin (200 °C) was confirmed effective for removing LgpH<1 and its negative nutritional influence, providing a feasible strategy for overcoming the negative impact of alkali lignin on protein digestion.


Subject(s)
Alkalies , Lignin , Lignin/metabolism , Alkalies/chemistry , Molecular Docking Simulation , Hydrolysis , Acids , Chymotrypsin
8.
Environ Sci Pollut Res Int ; 31(7): 10874-10886, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212563

ABSTRACT

In the context of carbon neutrality, promoting resource utilization of industrial alkali lignin addressing heavy metal pollution is crucial for China's pollution alleviation and carbon reduction. Microwave pyrolysis produced functionalized biochar from industrial alkali lignin for Ni(II) adsorption. LB400 achieved 343.15 mg g-1 saturated adsorption capacity in 30 min. Pseudo-second-order kinetic and Temkin isotherm models accurately described the adsorption, which was endothermic and spontaneous (ΔGÏ´ < 0, ΔHÏ´ > 0). Quantitative analysis revealed that both dissolved substances and carbon skeleton from biochar contributed to adsorption, with the former predominates (93.76%), including mineral precipitation NiCO3 (Qp) and adsorption of dissolved organic matter (QDOM). Surface complexation (Qc) and ion exchange (Qi) on the carbon skeleton accounted for 6.3%. Higher biochar preparation temperature reduced Ni(II) adsorption by dissolved substances. Overall, biochar which comes from the advantageous disposal of industrial lignin effectively removes Ni(II) contamination, encouraging ecologically sound treatment of heavy metal pollution and sustainable resource utilization.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Lignin , Adsorption , Charcoal , Carbon , Alkalies , Kinetics
9.
Polymers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139960

ABSTRACT

Lignin was utilized as an environmentally friendly synergistic agent to augment the fire resistance and mechanical characteristics of rigid polyurethane foam (PUF)/melamine-formaldehyde resin ammonium polyphosphate (MFAPP). The incorporation of lignin significantly enhanced the charring capability and flame retardancy of PUF/MFAPP. Specifically, PUF/MFAPP12/A-lignin3 exhibited a charring residue of 23.1% at 800 °C, accompanied by an increase in the limiting oxygen index (LOI) to 23.1%, resulting in a UL-94 V-0 rating. The cone calorimeter test (CCT) revealed that the peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) values of PUF/MFAPP12/A-lignin3 were all lower than for pure PUF. MFAPP and alkali lignin exerted a noticeable influence on the physical and mechanical properties, leading to increases in density (35.4 kg/m3), thermal conductivity (32.68 mW/(m·K)), and compressive strength (160.5 kPa). Observations of the morphology and elemental composition of char residues after combustion indicated the formation of an intact, thick, and continuous char layer enriched with nitrogen and phosphorus elements, which acted as a protective shield for the underlying foam.

10.
Food Chem X ; 20: 101035, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144819

ABSTRACT

Lignin valorization to produce functionalized materials is challenging. This study harnessed the versatile properties of lignin through a grafting reaction involving the aryl hydroxyl group of alkali lignin (AL) and enzymatically modified-alkali lignin (EMAL) using Bacillus ligninphilus-derived laccase (Lacc) L1 and C. seriivinvornas-derived dye-decolorizing peroxidase (DyP) with keratin (K) amide group. This reaction was executed utilizing an eco-friendly solvent with the aim of generating thin films. A thorough investigation was conducted, focusing on grafting AL and EMAL onto K. The incorporation of EMAL into the films enhanced tensile strength (TS) (14.8±1.8 MPa) and elongation at break (EAB) (23.7±0.3 %). Additionally, it enhanced thermal stability, suppressed the proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and mitigated oxidative stress. This study introduces a novel approach for lignin valorization, offering the potential to tailor mechanical properties, antibacterial and antioxidant properties of the final material, making it sustainable substitute for petroleum-based products.

11.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003457

ABSTRACT

Vitamin K3 (menadione), classified as a pro-vitamin, is a synthetic form of the fat-soluble family of vitamin K compounds. The combination of the vitamin with other molecules sharing structural and/or functional similarities, such as naturally occurring polyphenols, vitamins, or biopolymers, could potentiate mutual improvement of their antioxidant activity. The aim of the present study was to evaluate the role and contribution of vitamin K3 to the in vitro radical scavenging capacity of double and triple combinations with the phytochemicals naringenin and lignin, as well as assess possible intermolecular interactions between the bioactive compounds. Comparative analyses of the DPPH and ABTS radical scavenging activity of the pure substances vitamin K3, naringenin, and lignin; the two-component systems lignin/vitamin K3 and vitamin K3/naringenin; and the triple combination vitamin K3/flavonoid/lignin were carried out. The experimental results demonstrated increased DPPH and ABTS activities of the vitamin in combination with lignin compared to those of the two pure substances, i.e., a synergistic effect was observed. The registered significant increases in the radical scavenging activity of the triple combination determined via both methods are indicative of a remarkable potentiation effect, i.e., higher antioxidant potential exceeding the additive activity of the three pure substances.


Subject(s)
Lignin , Vitamin K 3 , Vitamin K 3/pharmacology , Vitamin K , Antioxidants/pharmacology , Vitamins , Phytochemicals/pharmacology
12.
Indian J Microbiol ; 63(4): 604-620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38031614

ABSTRACT

Manganese peroxidase (MnP), a microbial ligninolytic enzyme which plays significant role in lignin and melanoidin degradation has gained much attention in the field of industry. In the present study, 15 ligninolytic bacteria were isolated from the soil sample of Similipal Biosphere Reserve (SBR) and screened for MnP activity. The most efficient MnP-producing bacterium HNB5 was evaluated for alkali lignin and maillard reaction products (MRPs) degradation and identified as Enterobacter wuhouensis using 16S rRNA sequencing. This bacterium exhibited the highest MnP activity of 2.6 U mL-1 min-1 in un-optimized conditions. Further, optimization using response surface methodology E. wuhouensis showed increased MnP activity of 4.11 U mL-1 min-1 at pH 6.3, temperature 37 °C, substrate concentration 1.05%, and time 144 h. In both FT-IR and UV-Vis spectrophotometry analyses of control and bacterium degraded MRPs, the reduction in Maillard product colour was correlated with shifting absorption peaks. Also, the GC-MS analysis data showing a change in functional group revealed the rise of novel peaks caused due to the degradation of MRPs complex. The phytotoxicity study was conducted for bacterial degraded MRPs medium revealed that toxicity of the medium decreased after bacterial treatment. The findings of the current study suggest that the manganese MnP produced by E. wuhouensis isolated from SBR soil sample may be employed for bioremediation purposes to degrade MRPs.

13.
Int J Biol Macromol ; 253(Pt 7): 127471, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37863142

ABSTRACT

As an excellent alternative to petroleum-based food packaging materials, a novel green hybrid composite film with an excellent interconnected network structure was successfully fabricated by integrating chitosan (chi), microcrystalline cellulose (MCC), and lignin nanoparticles (LNP), including the desired amount of plasticizer glycerol (gly). Overall, 36 combinations were developed and investigated for superior biocomposite film formation. Among the various concentration ratios, the 40:35:25 chi-MCC-gly film provided well-organized film formation, good physicochemical properties, mechanical stability, efficient water contact angle, reduced water solubility, and lower water vapor permeability (11.43 ± 0.55 × 10-11 g.m-1.s-1.Pa-1). The performance of the chi-MCC-gly film further enhanced by the homogeneous incorporation of ∼100 nm LNP. With 1 % LNP addition, the tensile strength of the film increased (28.09 MPa, 47.10 % increase) and the water vapor permeability reached a minimum of 11.43 × 10-11 g.m-1.s-1.Pa-1, which proved the impact of LNP in composite films. Moreover, the films showed excellent resistance to thermal shrinkage even at 100 °C and exhibited nearly 100 % UV blocking efficiency at higher LNP concentrations. Interestingly, the green composite films extended the shelf life of freshly cut cherry tomatoes to seven days without spoilage. Overall, the facile synthesis of strong, insoluble, UV-blocking, and thermally stable green composite films realized for food packaging applications.


Subject(s)
Chitosan , Lignin , Chitosan/chemistry , Steam , Biopolymers/chemistry , Food Packaging
14.
Int J Biol Macromol ; 253(Pt 4): 127117, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37774822

ABSTRACT

Although dye-decolourising peroxidases (DyPs) are well-known for lignin degradation, a comprehensive understanding of their mechanism remains unclear. Therefore, studying the mechanism of lignin degradation by DyPs is necessary for industrial applications and enzyme engineering. In this study, a dye-decolourising peroxidase (CsDyP) gene from C. serinivorans was heterologously expressed and studied for its lignin degradation potential. Molecular docking analysis predicted the binding of 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), veratryl alcohol (VA), 2, 6-dimethylphenol (2, 6- DMP), guaiacol (GUA), and lignin to the substrate-binding pocket of CsDyP. Evaluation of the enzymatic properties showed that CsDyP requires pH 4.0 and 30 °C for optimal activity and has a high affinity for ABTS. In addition, CsDyP is stable over a wide range of temperatures and pH and can tolerate 5.0 mM organic solvents. Low NaCl concentrations promoted CsDyP activity. Further, CsDyP significantly reduced the chemical oxygen demand decolourised alkali lignin (AL) and milled wood lignin (MWL). CsDyP targets the ß-O-4, CO, and CC bonds linking lignin's G, S, and H units to depolymerize and produce aromatic compounds. Overall, this study delivers valuable insights into the lignin degradation mechanism of CsDyP, which can benefit its industrial applications and lignin valorization.


Subject(s)
Lignin , Peroxidase , Peroxidase/metabolism , Lignin/chemistry , Molecular Docking Simulation , Oxidation-Reduction , Peroxidases/metabolism , Coloring Agents/chemistry
15.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628882

ABSTRACT

Several phytochemicals, which display antioxidant activity and inhibit cancer cell phenotypes, could be used for cancer treatment and prevention. Lignin, as a part of plant biomass, is the second most abundant natural biopolymer worldwide, and represents approximately 30% of the total organic carbon content of the biosphere. Historically, lignin-based products have been viewed as waste materials of limited industrial usefulness, but modern technologies highlight the applicability of lignin in a variety of industrial branches, including biomedicine. The aims of our preliminary study were to compare the antioxidant properties of water-soluble alkali lignin solutions, before and after UV-B irradiation, as well as to clarify their effect on colon cancer cell viability (Colon 26), applied at low (tolerable) concentrations. The results showed a high antioxidant capacity of lignin solutions, compared to a water-soluble control antioxidant standard (Trolox) and remarkable radical scavenging activity was observed after their UV-B irradiation. Diminishment of cell viability as well as inhibition of the proliferative activity of the colon cancer cell line with an increase in alkali lignin concentrations were observed. Our results confirmed that, due to its biodegradable and biocompatible nature, lignin could be a potential agent for cancer therapy, especially in nanomedicine as a drug delivery system.


Subject(s)
Colonic Neoplasms , Lignin , Animals , Lignin/pharmacology , Antioxidants/pharmacology , Alkalies , Biomass , Fishes
16.
Int J Biol Macromol ; 252: 126432, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37604414

ABSTRACT

Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.


Subject(s)
Carbon , Water Pollutants, Chemical , Lignin/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water
17.
Molecules ; 28(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241853

ABSTRACT

Today, the emphasis is on environmentally friendly materials. Alkali lignin and spruce sawdust are suitable natural alternatives for removing dyes from wastewater. The main reason for using alkaline lignin as a sorbent is the recovery of waste black liquor from the paper industry. This work deals with removing dyes from wastewater using spruce sawdust and lignin at two different temperatures. The decolorization yields were calculated as the final values. Increasing the temperature during adsorption leads to higher decolorization yields, which may be due to the fact that some substances react only at elevated temperatures. The results of this research are useful for the treatment of industrial wastewater in paper mills, and the waste black liquor (alkaline lignin) can be used as a biosorbent.

18.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241985

ABSTRACT

A niobium-doped HZSM-5 (H[Nb]ZSM-5) was prepared by a hydrothermal synthesis method. The morphology, phase structure, composition, pore structure, and acid content of the catalyst were characterized using a series of analysis techniques such as scanning electron microscope (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, and temperature programmed desorption measurements (NH3-TPD). The H[Nb]ZSM-5 catalyst fully remained within the crystal framework and pore structure of HZSM-5. Meanwhile, introduction of niobium (V) endowed the catalyst with both Lewis acid and Bronsted acid sites. Catalytic fast pyrolysis (CFP) of alkali lignin was carried out through a pyrolysis and gas chromatography-mass spectrometry (Py-GC/MS) at 650 °C and atmospheric pressure. The results indicated that H[Nb]ZSM-5 can efficiently and selectively convert lignin into monoaromatic hydrocarbons (MAHs), compared to the control HZSM-5. Catalyzed by H[Nb]ZSM-5, the content of MAHs and aliphatic hydrocarbons reached 43.4% and 20.8%, respectively; while under the catalysis of HZSM-5, these values were 35.5% and 3.2%, respectively. H[Nb]ZSM-5 remarkably lowered the phenol content to approximately 2.8%, which is far lower than the content (24.9%) obtained under HZSM-5 catalysis.

19.
Int J Biol Macromol ; 241: 124505, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085079

ABSTRACT

Presently, most studies on modified lignin focused on the adsorption to heavy metal cations, but rarely to Ca2+ in hard water. Therefore, this work prepared a new gel-type lignin-based cationic adsorption resin (E-LSAF) through the crosslinking and curing of alkali lignin grafted by sodium sulfite sulfonated acetone to remove Ca2+ in water. Under the determined optimum synthesis conditions, E-LSAF with a highest sulfonic group content of 1.99 mmol/g was obtained. Structural and physicochemical measuring results showed E-LSAF was a gel-type resin, owning strong hydrophilicity, high mechanical strength, excellent thermal stability and acid-alkaline resistance. Adsorption results indicated the adsorption of E-LSAF to Ca2+ was well-fitted by Langmuir model, and the maximum adsorption capacity reached 45.8 mg/g. Pseudo-second-order model can describe this adsorption process well, suggesting it a chemisorption process. Dynamic column adsorption results showed E-LSAF could transform hard water into soft or even very soft water. The regeneration efficiency still maintained 80 % after 5 cycles. The adsorption mechanism was attributed to electrostatic attraction, ion exchange and complexation. This work provided a high-performance lignin-based cationic adsorption material with high adsorption capacity to Ca2+ and excellent acid-alkaline resistance, which filled the research gap of using modified sulfonated lignin to remove Ca2+ from water.


Subject(s)
Lignin , Water Pollutants, Chemical , Lignin/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogen-Ion Concentration , Water/chemistry , Alkanesulfonates , Cations , Kinetics
20.
Int J Biol Macromol ; 242(Pt 1): 124627, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37119882

ABSTRACT

This manuscript describes the synthesis and characterization of a hybrid polymer/HKUST-1 composite for oral drug delivery. A green, one-pot approach was employed to synthesize the modified metal-organic frameworks (MOFs) composite using alkali lignin as a novel pH-responsive biopolymer carrier for the simulated oral delivery system. Several analytical techniques, including Fourier transform infrared (FTIR), X-ray powder diffraction (XRPD), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to analyze the chemical and crystalline structure of HKUST-1 and L/HKUST-1 composite. The drug loading capacity and drug-controlled release behavior of HKUST-1 and L/HKUST-1 were examined using ibuprofen (IBU) as an oral drug model. L/HKUST-1 composite demonstrated a pH-controlled drug release behavior by advancing the drug stability at low pHs such as the gastric medium and controlling drug release in the pH range of 6.8-7.4, similar to intestinal pH. The results suggest that the L/HKUST-1 composite is a promising candidate for oral medication delivery.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Pharmaceutical Preparations , Lignin , Drug Liberation , Biopolymers
SELECTION OF CITATIONS
SEARCH DETAIL